Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties

被引:53
|
作者
Hajiloo, A. [1 ]
Nariman-zadeh, N. [1 ,2 ]
Moeini, Ali [3 ]
机构
[1] Univ Guilan, Dept Mech Engn, Fac Engn, Rasht, Iran
[2] Univ Tehran, Intelligent Based Expt Mech Ctr Excellence, Sch Mech Engn, Fac Engn, Tehran, Iran
[3] Univ Tehran, Fac Engn Sci, Tehran, Iran
关键词
Fractional-order; PID controllers; Uncertain systems; Reliability; Multi-objective optimization; Robust; NONLINEAR-SYSTEMS; PERFORMANCE;
D O I
10.1016/j.mechatronics.2012.04.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a multi-objective optimization approach is used for Pareto optimum design of robust integer-order and fractional-order PID controllers for both integer-order and fractional-order plants with parametric uncertainties. The aim of this paper is to compare the performances of those optimally-designed controllers dealing with parametric uncertainties of both integer-order and fractional-order plants. In this way, four combinations of plants and controllers have been considered in which five conflicting objective functions in both time and frequency domains are used in the Pareto design of both integer-order and fractional-order PID controllers. The results clearly show that effective trade-off design points can be compromisingly explored among the optimal robust integer-order and fractional-order PID controllers obtained using the methodology of this work. Furthermore, the superior robust stability and robust performance of the fractional-order PID controllers will be demonstrated in comparison with those of the integer-order PID controllers. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:788 / 801
页数:14
相关论文
共 50 条
  • [1] PARETO OPTIMAL ROBUST DESIGN OF FUZZY FRACTIONAL-ORDER PID CONTROLLERS
    Nariman-zadeh, Nader
    Hajiloo, Amir
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4735 - 4742
  • [2] Design of optimal fractional-order PID controllers
    Leu, JF
    Tsay, SY
    Hwang, C
    JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 2002, 33 (02): : 193 - 202
  • [3] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Saleh Sayyad Delshad
    MohammadMostafa Asheghan
    Mohammadtaghi Hamidi Beheshti
    Advances in Difference Equations, 2010
  • [4] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [5] Tuning rules for optimal PID and fractional-order PID controllers
    Padula, Fabrizio
    Visioli, Antonio
    JOURNAL OF PROCESS CONTROL, 2011, 21 (01) : 69 - 81
  • [6] H∞-design of fractional-order PID controllers
    Svaricek, Ferdinand
    Lachhab, Nabil
    AT-AUTOMATISIERUNGSTECHNIK, 2016, 64 (06) : 407 - 417
  • [7] On Fractional-order PID Controllers
    Edet, Emmanuel
    Katebi, Reza
    IFAC PAPERSONLINE, 2018, 51 (04): : 739 - 744
  • [8] Design and Simulation of Sliding Mode Controllers for Fractional-Order Singular Systems with Uncertainties
    Li X.-X.
    Yang D.-M.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2022, 43 (11): : 1521 - 1528
  • [9] Optimal approximation of analog PID controllers of complex fractional-order
    Mahata, Shibendu
    Herencsar, Norbert
    Maione, Guido
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1566 - 1593
  • [10] Optimal approximation of analog PID controllers of complex fractional-order
    Shibendu Mahata
    Norbert Herencsar
    Guido Maione
    Fractional Calculus and Applied Analysis, 2023, 26 : 1566 - 1593