Multiscale modeling of fluid permeability of a non-homogeneous porous media

被引:8
作者
Berndt, Edward [1 ]
Sevostianov, Igor [1 ]
机构
[1] New Mexico State Univ, Dept Mech Engn, Las Cruces, NM 88001 USA
关键词
Fluid permeability; Porous material; Homogenization; Effective properties; EFFECTIVE HYDRAULIC CONDUCTIVITY; NUMERICAL SPECTRAL APPROACH; COMPOSITE-MATERIALS; FLOW; DISPERSION; MATRIX;
D O I
10.1016/j.ijengsci.2012.03.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss various models describing single phase fluid flow in a porous media with non-uniform distribution of pore sizes. Treating such a media as a heterogeneous one we adopted various approximate schemes used in micromechanics of materials. For this aim, we introduced the fluid permeability contribution tensor that describes effect of a single inhomogeneity onto the overall properties. We also compare these derived micromechanical schemes with formulas used in geomechanics. We show that the different approaches lead to similar results. The main advantages of micromechanical schemes are, (1) they do not contain adjustable parameters; (2) they can be used to describe fluid permeability in materials with more than two phases. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 46 条
[1]  
[Anonymous], 1967, Elements pour une theorie des milieux poreux
[2]  
[Anonymous], 1879, MECH BEHANDLUNG ELEK
[3]  
[Anonymous], 1927, Akad. Wiss. Wien, Math-naturw.
[4]  
[Anonymous], 1873, TREATISE ELECT MAGNE
[5]   A NEW APPROACH TO THE APPLICATION OF MORI-TANAKA THEORY IN COMPOSITE-MATERIALS [J].
BENVENISTE, Y .
MECHANICS OF MATERIALS, 1987, 6 (02) :147-157
[7]  
Brenner H., 1982, PhysicoChem. Hydrodyn, V3, P139
[8]  
Brinkman H, 1949, APPL SCI RES A, VAl, P24
[9]  
Bruggeman D.A.G., 1935, ANN PHYS, V29, P160
[10]  
Carman C. P., 1937, Trans. Inst. Chem. Eng., V15, P150, DOI DOI 10.1016/S0263-8762(97)80003-2