The automorphism group of the bipartite Kneser graph

被引:17
|
作者
Mirafzal, S. Morteza [1 ]
机构
[1] Lorestan Univ, Dept Math, Khorramabad, Iran
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2019年 / 129卷 / 03期
关键词
Bipartite Kneser graph; vertex-transitive graph; automorphism group; Primary: 05C25; Secondary: 94C15;
D O I
10.1007/s12044-019-0477-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n and k be integers with n>2k, k1. We denote by H(n,k) the bipartite Kneser graph, that is, a graph with the family of k-subsets and (n-k)-subsets of [n]={1,2,...,n} as vertices, in which any two vertices are adjacent if and only if one of them is a subset of the other. In this paper, we determine the automorphism group of H(n,k). We show that Aut(H(n,k))Sym([n])xZ2, where Z2 is the cyclic group of order 2. Then, as an application of the obtained result, we give a new proof for determining the automorphism group of the Kneser graph K(n,k). In fact, we show how to determine the automorphism group of the Kneser graph K(n,k) given the automorphism group of the Johnson graph J(n,k). Note that the known proofs for determining the automorphism groups of Johnson graph J(n,k) and Kneser graph K(n,k) are independent of each other.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The automorphism group of the bipartite Kneser graph
    S Morteza Mirafzal
    Proceedings - Mathematical Sciences, 2019, 129
  • [2] Automorphism groups of bipartite Kneser type-k graphs
    Sreekumar, K. G.
    Ramesh Kumar, P.
    Manilal, K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (03)
  • [3] Topological Indices of the Bipartite Kneser Graph Hn,k
    Mohammadyari, R.
    Darafsheh, M. R.
    FILOMAT, 2014, 28 (10) : 1989 - 1996
  • [4] The automorphism group of the s-stable Kneser graphs
    Torres, Pablo
    ADVANCES IN APPLIED MATHEMATICS, 2017, 89 : 67 - 75
  • [5] The automorphism group of the alternating group graph
    Zhou, Jin-Xin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 229 - 231
  • [6] Automorphism group of the derangement graph
    Deng, Yun-Ping
    Zhang, Xiao-Dong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [7] On the automorphism group of the Aschbacher graph
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (02): : 162 - 176
  • [8] The automorphism group of the Andrasfai graph
    Mirafzal, Seyed Morteza
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 60 - 63
  • [9] On the automorphism group of the Aschbacher graph
    A. A. Makhnev
    D. V. Paduchikh
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 (Suppl 1) : 149 - 163
  • [10] Automorphism group and diameter of a graph
    Dankelmann, P.
    Erwin, D.
    Mukwembi, S.
    Rodrigues, B. G.
    Mwambene, E.
    Sabidussi, G.
    JOURNAL OF GRAPH THEORY, 2012, 70 (01) : 80 - 91