Bounding the sum of the largest Laplacian eigenvalues of graphs

被引:22
作者
Rocha, I. [1 ]
Trevisan, V. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91501970 Porto Alegre, RS, Brazil
关键词
Laplacian eigenvalues; Brouwer's conjecture;
D O I
10.1016/j.dam.2014.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that Brouwer's conjecture holds for certain classes of graphs. We also give upper bounds for the sum of the largest Laplacian eigenvalues for graphs satisfying certain properties: those that contain a path or a cycle of a given size, graphs with a given matching number and graphs with a given maximum degree. Then we provide conditions for which these upper bounds are better than the previous known results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 8 条
[1]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[2]   Upper bounds for the sum of Laplacian eigenvalues of graphs [J].
Du, Zhibin ;
Zhou, Bo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3672-3683
[3]   Characterizing trees with large Laplacian energy [J].
Fritscher, Eliseu ;
Hoppen, Carlos ;
Rocha, Israel ;
Trevisan, Vilmar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 :20-49
[4]   On the sum of the Laplacian eigenvalues of a tree [J].
Fritscher, Eliseu ;
Hoppen, Carlos ;
Rocha, Israel ;
Trevisan, Vilmar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) :371-399
[5]   On the sum of Laplacian eigenvalues of graphs [J].
Haemers, W. H. ;
Mohammadian, A. ;
Tayfeh-Rezaie, B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2214-2221
[6]   On a conjecture for the sum of Laplacian eigenvalues [J].
Wang, Shouzhong ;
Huang, Yufei ;
Liu, Bolian .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 56 (3-4) :60-68
[7]  
Wielandt H., 1955, Proceedings of the American Mathematical Society, V6, P106
[8]   On Laplacian eigenvalues of a graph [J].
Zhou, B .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (03) :181-184