pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes

被引:68
作者
Zeng, Zhenping [1 ]
Ai, Ye [2 ]
Qian, Shizhi [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Singapore Univ Technol & Design, Singapore 138682, Singapore
[3] Old Dominion Univ, Inst Micronanotechnol, Norfolk, VA 23529 USA
关键词
SOLID-STATE NANOPORES; CONCENTRATION POLARIZATION; NANOFLUIDIC DIODE; POLYMER BRUSHES; LOGIC GATES; TRANSPORT; TRANSLOCATION; NANOCHANNELS; SELECTIVITY; TRANSISTORS;
D O I
10.1039/c3cp54097a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mimicking biological ion channels capable of pH-regulated ionic transport, synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have been considered as versatile tools for active transport control of ions, fluids, and bioparticles on the nanoscale. The ionic current rectification (ICR) phenomenon through a conical nanopore functionalized with PE brushes whose charge highly depends upon the local solution properties (i.e., pH and background salt concentration) is studied theoretically for the first time. The results show that the rectification magnitude, as well as the preferential rectification direction, is sensitive to the pH stimulus. The bulk concentration of the background salt can also significantly influence the charge of the PE brushes and accordingly affect the ICR phenomenon. The obtained results provide an insightful understanding of the pH-regulated ICR and guidelines for designing nanopores functionalized with PE brushes for pH-tunable applications.
引用
收藏
页码:2465 / 2474
页数:10
相关论文
共 64 条
[1]   Ionic current rectification in a conical nanofluidic field effect transistor [J].
Ai, Ye ;
Liu, Jing ;
Zhang, Bingkai ;
Qian, Shizhi .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 157 (02) :742-751
[2]   Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson-Boltzmann approach [J].
Ai, Ye ;
Qian, Shizhi .
ELECTROPHORESIS, 2011, 32 (09) :996-1005
[3]   Electrokinetic particle translocation through a nanopore [J].
Ai, Ye ;
Qian, Shizhi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (09) :4060-4071
[4]   Field Effect Regulation of DNA Trans location through a Nanopore [J].
Ai, Ye ;
Liu, Jing ;
Zhang, Bingkai ;
Qian, Shizhi .
ANALYTICAL CHEMISTRY, 2010, 82 (19) :8217-8225
[5]   Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores [J].
Ai, Ye ;
Zhang, Mingkan ;
Joo, Sang W. ;
Cheney, Marcos A. ;
Qian, Shizhi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (09) :3883-3890
[6]   A pH-tunable nanofluidic diode:: Electrochemical rectification in a reconstituted single ion channel [J].
Alcaraz, Antonio ;
Ramirez, Patricio ;
Garcia-Gimenez, Elena ;
Lopez, M. Lidon ;
Andrio, Andreu ;
Aguilella, Vicente M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (42) :21205-21209
[7]   Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment [J].
Ali, Mubarak ;
Yameen, Basit ;
Cervera, Javier ;
Ramirez, Patricio ;
Neumann, Reinhard ;
Ensinger, Wolfgang ;
Knoll, Wolfgang ;
Azzaroni, Omar .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (24) :8338-8348
[8]   Track etching technique in membrane technology [J].
Apel, P .
RADIATION MEASUREMENTS, 2001, 34 (1-6) :559-566
[9]   Effect of nanopore geometry on ion current rectification [J].
Apel, Pavel Yu ;
Blonskaya, Irina V. ;
Orelovitch, Oleg L. ;
Ramirez, Patricio ;
Sartowska, Bozena A. .
NANOTECHNOLOGY, 2011, 22 (17)
[10]   Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields [J].
Azzaroni, Omar .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2012, 50 (16) :3225-3258