Diophantine approximation on matrices and Lie groups

被引:13
作者
Aka, Menny [1 ]
Breuillard, Emmanuel [2 ,3 ]
Rosenzweig, Lior [4 ]
de Saxce, Nicolas [5 ]
机构
[1] ETH, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Munster, Math Inst, 62 Einsteinstr, Munster, Germany
[3] DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[4] ORT Braude Coll, Dept Math, POB 78, IL-21982 Karmiel, Israel
[5] Univ Paris 13, CNRS, LAGA, F-93430 Villetaneuse, France
基金
欧洲研究理事会;
关键词
Metric diophantine approximation; Homogeneous dynamics; Extremal manifolds; Group actions; HOMOGENEOUS SPACES; THEOREM; FLOWS; DYNAMICS; SYSTEMS; GROWTH;
D O I
10.1007/s00039-018-0436-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the general problem of extremality for metric diophantine approximation on submanifolds of matrices. We formulate a criterion for extremality in terms of a certain family of algebraic obstructions and show that it is sharp. In general the almost sure diophantine exponent of a submanifold is shown to depend only on its Zariski closure, and when the latter is defined over , we prove that the exponent is rational and give a method to effectively compute it. This method is applied to a number of cases of interest. In particular we prove that the diophantine exponent of rational nilpotent Lie groups exists and is a rational number, which we determine explicitly in terms of representation theoretic data.
引用
收藏
页码:1 / 57
页数:57
相关论文
共 47 条
[1]   Diophantine properties of nilpotent Lie groups [J].
Aka, Menny ;
Breuillard, Emmanuel ;
Rosenzweig, Lior ;
de Saxce, Nicolas .
COMPOSITIO MATHEMATICA, 2015, 151 (06) :1157-1188
[2]   On metric Diophantine approximation in matrices and Lie groups [J].
Aka, Menny ;
Breuillard, Emmanuel ;
Rosenzweig, Lior ;
de Saxce, Nicolas .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (03) :185-189
[3]  
[Anonymous], 1987, Identical Relations in Lie Algebras
[4]  
BAKER RC, 1976, J LOND MATH SOC, V14, P43
[5]  
BASS H, 1972, P LOND MATH SOC, V25, P603
[6]  
Beresnevich V, 1996, ACTA ARITH, V75, P219
[7]   METRIC DIOPHANTINE APPROXIMATION: THE KHINTCHINE-GROSHEV THEOREM FOR NONDEGENERATE MANIFOLDS [J].
Beresnevich, V. V. ;
Bernik, V. I. ;
Kleinbock, D. Y. ;
Margulis, G. A. .
MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) :203-225
[8]  
Beresnevich V, 2016, LOND MATH S, P1
[9]  
Beresnevich V, 2015, J THEOR NOMBR BORDX, V27, P1
[10]  
Berestovskii VN, 1988, SIB MAT ZH, V29, P17