Capacitary estimates of solutions of semilinear parabolic equations

被引:6
作者
Marcus, Moshe [1 ]
Veron, Laurent [2 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Univ Tours, Dept Math, Tours, France
基金
以色列科学基金会;
关键词
POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; BOUNDARY TRACE; SINGULARITIES;
D O I
10.1007/s00526-012-0545-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any positive solution of in with initial trace (F, 0), where F is a closed subset of can be represented, up to two universal multiplicative constants, by a series involving the Bessel capacity . As a consequence we prove that there exists a unique positive solution of the equation with such an initial trace. We also characterize the blow-up set of u(x, t) when , by using the "density" of F expressed in terms of the -Bessel capacity.
引用
收藏
页码:131 / 183
页数:53
相关论文
共 35 条
[1]  
Adams D.R., 1967, GRUNDLEHREN MATH WIS, V145
[2]   Quasiadditivity and measure property of capacity and the tangential boundary behavior of harmonic functions [J].
Aikawa, H ;
Borichev, AA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (03) :1013-1030
[3]   SEMILINEAR PARABOLIC PROBLEMS WITH GIVEN MEASURES [J].
BARAS, P ;
PIERRE, M .
APPLICABLE ANALYSIS, 1984, 18 (1-2) :111-149
[4]  
Berens H., 1996, GRUNDLEHREN MATH WIS, V314
[5]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[6]   SEMILINEAR EQUATIONS IN RN WITHOUT CONDITION AT INFINITY [J].
BREZIS, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 12 (03) :271-282
[7]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[8]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[9]  
Dynkin E. B., 2004, U LECT SERIES, V34
[10]   Solutions of Lu=u(alpha) dominated by L-harmonic functions [J].
Dynkin, EB ;
Kuznetsov, SE .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :15-37