Automated individual-level parcellation of Broca's region based on functional connectivity

被引:10
作者
Jakobsen, Estrid [1 ]
Liem, Franziskus [1 ]
Klados, Manousos A. [1 ]
Bayrak, Seyma [1 ]
Petrides, Michael [2 ]
Margulies, Daniel S. [1 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, Max Planck Res Grp Neuroanat & Connect, Leipzig, Germany
[2] McGill Univ, Montreal Neurol Inst, Cognit Neurosci Unit, Montreal, PQ, Canada
基金
瑞士国家科学基金会;
关键词
FMRI; Neuroimaging; Cortical; Parcellation; Language; RESTING-STATE FMRI; HUMAN BRAIN; CORTEX; VARIABILITY; MRI; PATTERNS; AREAS;
D O I
10.1016/j.neuroimage.2016.09.069
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Broca's region can be subdivided into its constituent areas 44 and 45 based on established differences in connectivity to superior temporal and inferior parietal regions. The current study builds on our previous work manually parcellating Broca's area on the individual-level by applying these anatomical criteria to functional connectivity data. Here we present an automated observer-independent and anatomy-informed parcellation pipeline with comparable precision to the manual labels at the individual-level. The method first extracts individualized connectivity templates of areas 44 and 45 by assigning to each surface vertex within the ventrolateral frontal cortex the partial correlation value of its functional connectivity to group-level templates of areas 44 and 45, accounting for other template connectivity patterns. To account for cross-subject variability in connectivity, the partial correlation procedure is then repeated using individual-level network templates, including individual-level connectivity from areas 44 and 45. Each node is finally labeled as area 44, 45, or neither, using a winner-take-all approach. The method also incorporates prior knowledge of anatomical location by weighting the results using spatial probability maps. The resulting area labels show a high degree of spatial overlap with the gold-standard manual labels, and group-average area maps are consistent with cytoarchitectonic probability maps of areas 44 and 45. To facilitate reproducibility and to demonstrate that the method can be applied to resting-state fMRI datasets with varying acquisition and preprocessing parameters, the labeling procedure is applied to two open-source datasets from the Human Connectome Project and the Nathan Kline Institute Rockland Sample. While the current study focuses on Broca's region, the method is adaptable to parcellate other cortical regions with distinct connectivity profiles.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 30 条
  • [21] Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey
    Petrides, M
    Pandya, DN
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2002, 16 (02) : 291 - 310
  • [22] Rasmussen T., 1975, Cerebral localization, P238
  • [23] Sequential Processing of Lexical, Grammatical, and Phonological Information Within Broca's Area
    Sahin, Ned T.
    Pinker, Steven
    Cash, Sydney S.
    Schomer, Donald
    Halgren, Eric
    [J]. SCIENCE, 2009, 326 (5951) : 445 - 449
  • [24] Automatic denoising of functional MM data: Combining independent component analysis and hierarchical fusion of classifiers
    Salimi-Khorshidi, Gholamreza
    Douaud, Gwenaelle
    Beckmann, Christian F.
    Glasser, Matthew F.
    Griffanti, Ludovica
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2014, 90 : 449 - 468
  • [25] Resting-state fMRI in the Human Connectome Project
    Smith, Stephen M.
    Beckmann, Christian F.
    Andersson, Jesper
    Auerbach, Edward J.
    Bijsterbosch, Janine
    Douaud, Gwenaelle
    Duff, Eugene
    Feinberg, David A.
    Griffanti, Ludovica
    Harms, Michael P.
    Kelly, Michael
    Laumann, Timothy
    Miller, Karla L.
    Moeller, Steen
    Petersen, Steve
    Power, Jonathan
    Salimi-Khorshidi, Gholamreza
    Snyder, Abraham Z.
    Vu, An T.
    Woolrich, Mark W.
    Xu, Junqian
    Yacoub, Essa
    Ugurbil, Kamil
    Van Essen, David C.
    Glasser, Matthew F.
    [J]. NEUROIMAGE, 2013, 80 : 144 - 168
  • [26] Which fMRI clustering gives good brain parcellations?
    Thirion, Bertrand
    Varoquaux, Gael
    Dohmatob, Elvis
    Poline, Jean-Baptiste
    [J]. FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [27] Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus:: an in vivo MRI analysis
    Tomaiuolo, F
    MacDonald, JD
    Caramanos, Z
    Posner, G
    Chiavaras, M
    Evans, AC
    Petrides, M
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (09) : 3033 - 3046
  • [28] Parcellating cortical functional networks in individuals
    Wang, Danhong
    Buckner, Randy L.
    Fox, Michael D.
    Holt, Daphne J.
    Holmes, Avram J.
    Stoecklein, Sophia
    Langs, Georg
    Pan, Ruiqi
    Qian, Tianyi
    Li, Kuncheng
    Baker, Justin T.
    Stufflebeam, Steven M.
    Wang, Kai
    Wang, Xiaomin
    Hong, Bo
    Liu, Hesheng
    [J]. NATURE NEUROSCIENCE, 2015, 18 (12) : 1853 - 1860
  • [29] Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations
    Wig, Gagan S.
    Laumann, Timothy O.
    Cohen, Alexander L.
    Power, Jonathan D.
    Nelson, Steven M.
    Glasser, Matthew F.
    Miezin, Francis M.
    Snyder, Abraham Z.
    Schlaggar, Bradley L.
    Petersen, Steven E.
    [J]. CEREBRAL CORTEX, 2014, 24 (08) : 2036 - 2054
  • [30] The organization of the human cerebral cortex estimated by intrinsic functional connectivity
    Yeo, B. T. Thomas
    Krienen, Fenna M.
    Sepulcre, Jorge
    Sabuncu, Mert R.
    Lashkari, Danial
    Hollinshead, Marisa
    Roffman, Joshua L.
    Smoller, Jordan W.
    Zoeller, Lilla
    Polimeni, Jonathan R.
    Fischl, Bruce
    Liu, Hesheng
    Buckner, Randy L.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2011, 106 (03) : 1125 - 1165