Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

被引:40
作者
Grimm, Kevin [1 ]
Zhang, Zhiyong [2 ]
Hamagami, Fumiaki [3 ]
Mazzocco, Michele [4 ]
机构
[1] Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA
[2] Notre Dame Univ, Dept Psychol, Fremantle, WA 6959, Australia
[3] Univ Hawaii Manoa, Dept Psychiat, Honolulu, HI 96822 USA
[4] Univ Minnesota, Inst Child Dev, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
MATHEMATICS LEARNING-DISABILITY; CURVE;
D O I
10.1080/00273171.2012.755111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of rates of change and acceleration in latent growth curvesinformation available indirectly through traditional growth curve models when change patterns are nonlinear with respect to time. To illustrate this approach, exponential growth models in the three frameworks are fit to longitudinal response time data from the Math Skills Development Project (Mazzocco & Meyers, 2002, 2003). We highlight the additional information gained from fitting growth curves in these frameworks as well as limitations and extensions of these approaches.
引用
收藏
页码:117 / 143
页数:27
相关论文
共 30 条
[1]  
[Anonymous], STRUCTURAL IN PRESS
[2]  
[Anonymous], 2007, Why Is Math So Hard for Some Children? The Nature and Origins of Mathematical Learning Difficulties and Disabilities
[3]  
[Anonymous], METHODS ANAL CHANGE
[4]  
[Anonymous], NEW METHODS ANAL CHA
[5]  
BEAL SL, 1982, CRIT REV BIOMED ENG, V8, P195
[6]   A method for modeling the intrinsic dynamics of intraindividual variability: Recovering the parameters of simulated oscillators in multi-wave panel data [J].
Boker, SM ;
Nesselroade, JR .
MULTIVARIATE BEHAVIORAL RESEARCH, 2002, 37 (01) :127-160
[7]  
Browne M.W., 1993, Multivariate analysis: Future directions 2, P171, DOI DOI 10.1016/B978-0-444-81531-6.50016-7
[8]  
BROWNE MW, 1991, BEST METHODS FOR THE ANALYSIS OF CHANGE, P47, DOI 10.1037/10099-004
[9]  
BURCHINAL M, 1991, CHILD DEV, V62, P23, DOI 10.1111/j.1467-8624.1991.tb01512.x
[10]   A version of quadratic regression with interpretable parameters [J].
Cudeck, R ;
du Toit, SHC .
MULTIVARIATE BEHAVIORAL RESEARCH, 2002, 37 (04) :501-519