A note on the free energy of the Keller-Segel model for subcritical and supercritical cases

被引:2
作者
Bian, Shen [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
基金
中国博士后科学基金;
关键词
Free energy; Steady state solutions; Invariant scaling; Far-field mass; Compact support; CONCENTRATION-COMPACTNESS PRINCIPLE; POSITIVE SOLUTIONS; STEADY-STATES; DIFFUSION; AGGREGATION; EXISTENCE; SYMMETRY; EQUATION;
D O I
10.1016/j.na.2015.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis of a degenerate Keller-Segel model with the diffusion exponent 2d/d+2 < m < 2 - 2/d and m > 2 - 2/d. For m <= 2 - 2/d, this model possesses a scaling invariant space L-p norm with p := d(2-m)/2. When m = 2d/d+2, a result of Chen et al. (2012) shows that the L-p norm of the steady states is the critical point of the free energy. For m = 2 - 2/d, the L-p norm of the steady states minimizes the free energy (Blanchet et al., 2009). In this paper, we will explore the relationship between the L-p norm of the steady states and the free energy with the diffusion exponent 2d/d+2 < m < 2 - 2/d. Here a modified Hardy-Littlewood-Sobolev inequality plays an important role: integral integral(Rd xRd) u(x) u(y)/vertical bar x - y vertical bar(d-2)dxdy <= C-HLS parallel to u parallel to(2-m)(p)parallel to u parallel to(m)(m). In addition, we will give the upper bound of the support of the steady state solutions for the subcritical case m > 2 - 2/d via the concentration-compactness principle (Lions, 1984). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:406 / 422
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 2006, Transport equations in biology
[2]   Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m &gt; 0 [J].
Bian, Shen ;
Liu, Jian-Guo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (03) :1017-1070
[3]  
Blanchet A, 2006, ELECTRON J DIFFER EQ
[4]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[5]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[6]   Hardy-Littlewood-Sobolev inequalities via fast diffusion flows [J].
Carlen, Eric A. ;
Carrillo, Jose A. ;
Loss, Michael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (46) :19696-19701
[7]  
Chandrasekhar S., 1967, An Introduction to the Study of Stellar Structure
[8]   MULTIDIMENSIONAL DEGENERATE KELLER-SEGEL SYSTEM WITH CRITICAL DIFFUSION EXPONENT 2n/(n+2) [J].
Chen, Li ;
Liu, Jian-Guo ;
Wang, Jinhuan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) :1077-1102
[9]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[10]  
Dancer EN, 2012, INDIANA U MATH J, V61, P1971