Statistical Learning on Manifold-Valued Data

被引:2
作者
Kuleshov, Alexander [1 ]
Bernstein, Alexander [2 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] FRC CSC RAS, Inst Syst Anal, Moscow, Russia
[3] Kharkevich Inst Informat Transmission Problems RA, Moscow, Russia
来源
MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION (MLDM 2016) | 2016年 / 9729卷
关键词
Regression on manifolds; Regression on features; Input manifold reconstruction; Jacobian estimation; Tangent bundle manifold learning; NONPARAMETRIC REGRESSION;
D O I
10.1007/978-3-319-41920-6_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regression on manifolds problem is to estimate an unknown smooth function f that maps p-dimensional manifold-valued inputs, whose values lie on unknown Input manifold M of lower dimensionality q < p embedded in an ambient high-dimensional input space R-p, to m-dimensional outputs from training sample consisting of given 'input-output' pairs. We consider this problem in which Jacobian J(f)(X) of function f and Input manifold M should be also estimated. The paper presents a new geometrically motivated method for estimating a triple (f(X), J(f)(X), M) from given sample. The proposed solution is based on solving a Tangent bundle manifold learning problem for specific unknown Regression manifold embedded in input-output space Rp+m and consisting of input-output pairs (X, f(X)), X is an element of M.
引用
收藏
页码:311 / 325
页数:15
相关论文
empty
未找到相关数据