Statistical Learning on Manifold-Valued Data

被引:2
作者
Kuleshov, Alexander [1 ]
Bernstein, Alexander [2 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] FRC CSC RAS, Inst Syst Anal, Moscow, Russia
[3] Kharkevich Inst Informat Transmission Problems RA, Moscow, Russia
来源
MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION (MLDM 2016) | 2016年 / 9729卷
关键词
Regression on manifolds; Regression on features; Input manifold reconstruction; Jacobian estimation; Tangent bundle manifold learning; NONPARAMETRIC REGRESSION;
D O I
10.1007/978-3-319-41920-6_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regression on manifolds problem is to estimate an unknown smooth function f that maps p-dimensional manifold-valued inputs, whose values lie on unknown Input manifold M of lower dimensionality q < p embedded in an ambient high-dimensional input space R-p, to m-dimensional outputs from training sample consisting of given 'input-output' pairs. We consider this problem in which Jacobian J(f)(X) of function f and Input manifold M should be also estimated. The paper presents a new geometrically motivated method for estimating a triple (f(X), J(f)(X), M) from given sample. The proposed solution is based on solving a Tangent bundle manifold learning problem for specific unknown Regression manifold embedded in input-output space Rp+m and consisting of input-output pairs (X, f(X)), X is an element of M.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 26 条
  • [21] Subject-to-group statistical comparison for open banking-type data
    Svetlosak, A.
    de Carvalho, M.
    Calabrese, R.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2023, 74 (03) : 703 - 718
  • [22] Statistical Modeling for Mortality Data Using Local Generalized Poisson Regression Model
    Astuti, Erni Tri
    Budiantara, I. Nyoman
    Sunaryo, Sony
    Dokhi, M.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 33 (03): : 92 - 101
  • [23] Semiparametric regression for spatial data via deep learning
    Li, Kexuan
    Zhu, Jun
    Ives, Anthony R.
    Radeloff, Volker C.
    Wang, Fangfang
    SPATIAL STATISTICS, 2023, 57
  • [24] PREDICTION-BASED TERMINATION RULE FOR GREEDY LEARNING WITH MASSIVE DATA
    Xu, Chen
    Lin, Shaobo
    Fang, Jian
    Li, Runze
    STATISTICA SINICA, 2016, 26 (02) : 841 - 860
  • [25] Data-driven Transient Stability Assessment Based on Kernel Regression and Distance Metric Learning
    Liu, Xianzhuang
    Min, Yong
    Chen, Lei
    Zhang, Xiaohua
    Feng, Changyou
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2021, 9 (01) : 27 - 36
  • [26] Data Reduction Using Statistical and Regression Approaches for Ice Velocity Derived by Landsat-8, Sentinel-1 and Sentinel-2
    Derkacheva, Anna
    Mouginot, Jeremie
    Millan, Romain
    Maier, Nathan
    Gillet-Chaulet, Fabien
    REMOTE SENSING, 2020, 12 (12)