Statistical Learning on Manifold-Valued Data

被引:2
|
作者
Kuleshov, Alexander [1 ]
Bernstein, Alexander [2 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] FRC CSC RAS, Inst Syst Anal, Moscow, Russia
[3] Kharkevich Inst Informat Transmission Problems RA, Moscow, Russia
来源
MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION (MLDM 2016) | 2016年 / 9729卷
关键词
Regression on manifolds; Regression on features; Input manifold reconstruction; Jacobian estimation; Tangent bundle manifold learning; NONPARAMETRIC REGRESSION;
D O I
10.1007/978-3-319-41920-6_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regression on manifolds problem is to estimate an unknown smooth function f that maps p-dimensional manifold-valued inputs, whose values lie on unknown Input manifold M of lower dimensionality q < p embedded in an ambient high-dimensional input space R-p, to m-dimensional outputs from training sample consisting of given 'input-output' pairs. We consider this problem in which Jacobian J(f)(X) of function f and Input manifold M should be also estimated. The paper presents a new geometrically motivated method for estimating a triple (f(X), J(f)(X), M) from given sample. The proposed solution is based on solving a Tangent bundle manifold learning problem for specific unknown Regression manifold embedded in input-output space Rp+m and consisting of input-output pairs (X, f(X)), X is an element of M.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 50 条
  • [1] Statistical tests for group comparison of manifold-valued data
    Collard, Anne
    Phillips, Christoph
    Sepulchre, Rodolphe
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1144 - 1149
  • [2] A Graph Framework for Manifold-Valued Data
    Bergmann, Ronny
    Tenbrinck, Daniel
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (01): : 325 - 360
  • [3] Scattered manifold-valued data approximation
    Grohs, Philipp
    Sprecher, Markus
    Yu, Thomas
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 987 - 1010
  • [4] Interpolatory wavelets for manifold-valued data
    Grohs, Philipp
    Wallner, Johannes
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) : 325 - 333
  • [5] Multiscale representations for manifold-valued data
    Rahman, IU
    Drori, I
    Stodden, VC
    Donoho, DL
    Schröder, P
    MULTISCALE MODELING & SIMULATION, 2005, 4 (04): : 1201 - 1232
  • [6] Learning spatiotemporal trajectories from manifold-valued longitudinal data
    Schiratti, Jean-Baptiste
    Allassonniere, Stephanie
    Colliot, Olivier
    Durrleman, Stanley
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [7] Hermite multiwavelets for manifold-valued data
    Cotronei, Mariantonia
    Moosmuller, Caroline
    Sauer, Tomas
    Sissouno, Nada
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (03)
  • [8] Hermite multiwavelets for manifold-valued data
    Mariantonia Cotronei
    Caroline Moosmüller
    Tomas Sauer
    Nada Sissouno
    Advances in Computational Mathematics, 2023, 49
  • [9] Scattered manifold-valued data approximation
    Philipp Grohs
    Markus Sprecher
    Thomas Yu
    Numerische Mathematik, 2017, 135 : 987 - 1010
  • [10] Total Generalized Variation for Manifold-Valued Data
    Bredies, K.
    Holler, M.
    Storath, M.
    Weinmann, A.
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (03): : 1785 - 1848