Emerging Diversity in Lipid-Protein Interactions

被引:331
作者
Corradi, Valentina [1 ,2 ]
Sejdiu, Besian I. [1 ,2 ]
Mesa-Galloso, Haydee [1 ,2 ]
Abdizadeh, Haleh [3 ,4 ]
Noskov, Sergei Yu. [1 ,2 ]
Marrink, Siewert J. [3 ,4 ]
Tieleman, D. Peter [1 ,2 ]
机构
[1] Univ Calgary, Ctr Mol Simulat, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[3] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
[4] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; AMYLOID PRECURSOR PROTEIN; OUTER-MEMBRANE PROTEIN; CHOLESTEROL-BINDING-SITES; SOLID-STATE NMR; NICOTINIC ACETYLCHOLINE-RECEPTOR; INFLUENZA-VIRUS HEMAGGLUTININ; POLARIZABLE FORCE-FIELDS; HELIX-HELIX INTERACTIONS; POTASSIUM CHANNEL KCSA;
D O I
10.1021/acs.chemrev.8b00451
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
引用
收藏
页码:5775 / 5848
页数:74
相关论文
共 845 条
[1]   Band 3 function and dysfunction in a structural context [J].
Abbas, Yazan M. ;
Toye, Ashley M. ;
Rubinstein, John L. ;
Reithmeier, Reinhart A. F. .
CURRENT OPINION IN HEMATOLOGY, 2018, 25 (03) :163-170
[2]   Interactions of the EGFR juxtamembrane domain with PIP2-containing lipid bilayers: Insights from multiscale molecular dynamics simulations [J].
Abd Halim, Khairul Bariyyah ;
Koldso, Heidi ;
Sansom, Mark S. P. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2015, 1850 (05) :1017-1025
[3]   Dual Effect of Phosphatidyl (4,5)-Bisphosphate PIP2 on Shaker K+ Channels [J].
Abderemane-Ali, Fayal ;
Es-Salah-Lamoureux, Zeineb ;
Delemotte, Lucie ;
Kasimova, Marina A. ;
Labro, Alain J. ;
Snyders, Dirk J. ;
Fedida, David ;
Tarek, Mounir ;
Baro, Isabelle ;
Loussouarn, Gildas .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (43) :36158-36167
[4]   Structural basis for maintenance of bacterial outer membrane lipid asymmetry [J].
Abellon-Ruiz, Javier ;
Kaptan, Shreyas S. ;
Basle, Arnaud ;
Claudi, Beatrice ;
Bumann, Dirk ;
Kleinekathoefer, Ulrich ;
van den Berg, Bert .
NATURE MICROBIOLOGY, 2017, 2 (12) :1616-1623
[5]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[6]   Cardiolipin Affects the Supramolecular Organization of ATP Synthase in Mitochondria [J].
Acehan, Devrim ;
Malhotra, Ashim ;
Xu, Yang ;
Ren, Mindong ;
Stokes, David L. ;
Schlame, Michael .
BIOPHYSICAL JOURNAL, 2011, 100 (09) :2184-2192
[7]   Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching [J].
Adkins, Erika M. ;
Samuvel, Devadoss J. ;
Fog, Jacob U. ;
Eriksen, Jacob ;
Jayanthi, Lankupalle D. ;
Vaegter, Christian Bjerggaard ;
Ramamoorthy, Sammanda ;
Gether, Ulrik .
BIOCHEMISTRY, 2007, 46 (37) :10484-10497
[8]   Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real? [J].
Agwa, Akello J. ;
Henriques, Sonia T. ;
Schroeder, Christina I. .
NEUROPHARMACOLOGY, 2017, 127 :32-45
[9]   The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy [J].
Ahn, J ;
Wong, JT ;
Molday, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (27) :20399-20405
[10]   HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations [J].
Akabori, Kiyotaka ;
Huang, Kun ;
Treece, Bradley W. ;
Jablin, Michael S. ;
Maranville, Brian ;
Woll, Arthur ;
Nagle, John F. ;
Garcia, Angel E. ;
Tristram-Nagle, Stephanie .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2014, 1838 (12) :3078-3087