Generalised linear mixed model analysis via sequential Monte Carlo sampling

被引:15
作者
Fan, Y. [1 ]
Leslie, D. S. [2 ]
Wand, M. P. [3 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
generalised additive models; longitudinal data analysis; nonparametric regression; sequential Monte Carlo sampler;
D O I
10.1214/07-EJS158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present sequential Monte Carlo sampler algorithm for the Bayesian analysis of generalised linear mixed models (GLMMs). These models support a variety of interesting regression-type analyses, but performing inference is often extremely difficult, even when using the Bayesian approach combined with Markov chain Monte Carlo (MCMC). The Sequential Monte Carlo sampler (SMC) is a new and general method for producing samples from posterior distributions. In this article we demonstrate use of the SMC method for performing inference for GLMMs, We demonstrate the effectiveness of the method on both simulated and real data, and find that sequential Monte Carlo is a competitive alternative to the available MCMC techniques.
引用
收藏
页码:916 / 938
页数:23
相关论文
共 30 条
[1]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[2]  
BRESLOW NE, 1995, BIOMETRIKA, V82, P81
[3]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[4]   Improved particle filter for nonlinear problems [J].
Carpenter, J ;
Clifford, P ;
Fearnhead, P .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) :2-7
[5]   A sequential particle filter method for static models [J].
Chopin, N .
BIOMETRIKA, 2002, 89 (03) :539-551
[6]  
Clayton D.G., 1996, MARKOV CHAIN MONTE C, P275
[7]   Markov chain Monte Carlo convergence diagnostics: A comparative review [J].
Cowles, MK ;
Carlin, BP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :883-904
[8]   Sequential Monte Carlo samplers [J].
Del Moral, Pierre ;
Doucet, Arnaud ;
Jasra, Ajay .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :411-436
[9]  
DELMORAL P, 2007, BAYESIAN STAT, V8
[10]  
DIGGLE PJ, 1995, ANAL LONGITUDINAL DA