Interactive Selection of Multivariate Features in Large Saptiotemporal Data

被引:0
作者
Wang, Jingyuan [1 ]
Sisneros, Robert [2 ]
Huang, Jian [1 ]
机构
[1] Univ Tennessee, Knoxville, TN 37996 USA
[2] Natl Ctr Supercomp Applicat, Urbana, IL USA
来源
2013 IEEE SYMPOSIUM ON PACIFIC VISUALIZATION (PACIFICVIS) | 2013年
关键词
Multivariate; Interactive Feature Selection; Large Data; Metrics; VISUAL EXPLORATION; DATA SETS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Selecting meaningful features is central in the analysis of scientific data. Today's multivariate scientific datasets are often large and complex making it difficult to define general features of interest significant to scientific applications. To address this problem, we propose three general, spatiotemporal metrics to quantify the significant properties of data features-concentration, continuity and co-occurrence, named collectively as CO3. We implemented an interactive visualization system to investigate complex multivariate time-varying data from satellite remote sensing with great spatial resolutions, as well as from real-time continental-scale power grid monitoring with great temporal resolutions. The system integrates CO3 metrics with an elegant multi-space user interaction tool to provide various forms of quantitative user feedback. Through these, the system supports an iterative user-driven analysis process. Our findings demonstrate that the CO3 metrics are useful for simplifying the problem space and revealing potential unknown possibilities of scientific discoveries by assisting users to effectively select significant features and groups of features for visualization and analysis. Users can then comprehend the problem better and design future studies using newly discovered scientific hypotheses.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 25 条
  • [1] Chen CK, 2011, IEEE PAC VIS SYMP, P27, DOI 10.1109/PACIFICVIS.2011.5742369
  • [2] Doleisch H., 2003, Data Visualisation 2003. Joint Eurographics/IEEE TCVG. Symposium on Visualization, P239
  • [3] DOLEISCH H., 2005, C SIMULATION VISUALI, P291
  • [4] Visualizing Temporal Patterns in Large Multivariate Data using Textual Pattern Matching
    Glatter, Markus
    Huang, Jian
    Ahern, Sean
    Daniel, Jamison
    Lu, Aidong
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) : 1467 - 1474
  • [5] Interactive Volume Exploration for Feature Detection and Quantification in Industrial CT Data
    Hadwiger, Markus
    Fritz, Laura
    Rezk-Salama, Christof
    Hoellt, Thomas
    Geier, Georg
    Pabel, Thomas
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) : 1507 - 1514
  • [6] Volume Visualization based on Statistical Transfer-Function Spaces
    Haidacher, Martin
    Patel, Daniel
    Bruckner, Stefan
    Kanitsar, Armin
    Groeller, M. Eduard
    [J]. IEEE PACIFIC VISUALIZATION SYMPOSIUM 2010, 2010, : 17 - 24
  • [7] Ingram S., 2010, 2010 Proceedings of IEEE Symposium on Visual Analytics Science and Technology (VAST 2010), P3, DOI 10.1109/VAST.2010.5652392
  • [8] Ip CY, 2012, IEEE T VIS COMPUT GR, V18, P2355, DOI 10.1109/TVCG.2012.231
  • [9] Multifield visualization using local statistical complexity
    Jaenicke, Heike
    Wiebel, Alexander
    Scheuermann, Gerik
    Kollmann, Wolfgang
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1384 - 1391
  • [10] Jishang Wei, 2011, Proceedings of the IEEE Symposium on Large Data Analysis and Visualization (LDAV 2011), P47, DOI 10.1109/LDAV.2011.6092316