Stable Isotopes Reveal Widespread Anaerobic Methane Oxidation Across Latitude and Peatland Type

被引:97
作者
Gupta, Varun [1 ]
Smemo, Kurt A. [2 ,3 ]
Yavitt, Joseph B. [4 ]
Fowle, David [5 ]
Branfireun, Brian [6 ,7 ]
Basiliko, Nathan [1 ]
机构
[1] Univ Toronto, Dept Geog, Mississauga, ON L5L 1C6, Canada
[2] Holden Arboretum, Kirtland, OH 44094 USA
[3] Kent State Univ, Dept Biol Sci, Kent, OH 44242 USA
[4] Cornell Univ, Dept Nat Resources, Ithaca, NY 14853 USA
[5] Univ Kansas, Dept Geol, Lawrence, KS 66045 USA
[6] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada
[7] Univ Western Ontario, Ctr Environm & Sustainabil, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MER BLEUE BOG; FRESH-WATER; ORGANIC-MATTER; CONSORTIUM; REDUCTION; SEDIMENTS; SULFATE; IRON;
D O I
10.1021/es400484t
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peatlands are an important source of the atmospheric greenhouse gas methane (CH4). Although CH4 cycling and fluxes have been quantified for many northern peatlands, imprecision in process-based approaches to predicting CH4 emissions suggests that our understanding of underlying processes is incomplete. Microbial anaerobic oxidation of CH4 (AOM) is an important CH4 sink in marine sediments, but AOM has only recently been identified in a few nonmarine systems. We used C-13 isotope tracers and followed the fate of C-13 into CO2 and peat in order to study the geographic extent, relative importance, and biogeochemistry of AOM in 15 North American peatlands spanning a similar to 1500 km latitudinal transect that varied in hydrology, vegetation, and soil chemistry. For the first time, we demonstrate that AOM is a widespread and quantitatively important process across many peatland types and that anabolic microbial assimilation of CH4-C occurs. However, AOM rate is not predicted by CH4 production rates and the primary mechanism of C assimilation remains uncertain. AOM rates are higher in fen than bog sites, suggesting electron acceptor constraints on AOM. Nevertheless, AOM rates were not correlated with porewater ion concentrations or stimulated following additions of nitrate, sulfate, or ferric iron, suggesting that an unidentified electron acceptor(s) must drive AOM in peatlands. Globally, we estimate that AOM could consume a large proportion of CH4 produced annually (1.6-49 Tg) and thereby constrain emissions and greenhouse gas forcing.
引用
收藏
页码:8273 / 8279
页数:7
相关论文
共 43 条
[1]   NITROGEN SUPPLY EFFECTS ON PRODUCTIVITY AND POTENTIAL LEAF-LITTER DECAY OF CAREX SPECIES FROM PEATLANDS DIFFERING IN NUTRIENT LIMITATION [J].
AERTS, R ;
VANLOGTESTIJN, R ;
VANSTAALDUINEN, M ;
TOET, S .
OECOLOGIA, 1995, 104 (04) :447-453
[2]   Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands [J].
Basiliko, Nathan ;
Blodau, Christian ;
Roehm, Charlotte ;
Bengtson, Per ;
Moore, Tim R. .
ECOSYSTEMS, 2007, 10 (07) :1148-1165
[3]   Manganese- and Iron-Dependent Marine Methane Oxidation [J].
Beal, Emily J. ;
House, Christopher H. ;
Orphan, Victoria J. .
SCIENCE, 2009, 325 (5937) :184-187
[4]   Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling [J].
Blazewicz, Steven J. ;
Petersen, Dorthe G. ;
Waldrop, Mark P. ;
Firestone, Mary K. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2012, 117
[5]   Humic acid addition lowers methane release in peats of the Mer Bleue bog, Canada [J].
Blodau, Christian ;
Deppe, Marianna .
SOIL BIOLOGY & BIOCHEMISTRY, 2012, 52 :96-98
[6]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[7]   Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model [J].
Chen, Yu-Han ;
Prinn, Ronald G. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D10)
[8]   The methane cycle in ferruginous Lake Matano [J].
Crowe, S. A. ;
Katsev, S. ;
Leslie, K. ;
Sturm, A. ;
Magen, C. ;
Nomosatryo, S. ;
Pack, M. A. ;
Kessler, J. D. ;
Reeburgh, W. S. ;
Roberts, J. A. ;
Gonzalez, L. ;
Haffner, G. Douglas ;
Mucci, A. ;
Sundby, B. ;
Fowle, D. A. .
GEOBIOLOGY, 2011, 9 (01) :61-78
[9]   Cooccurrence of aerobic and anaerobic methane oxidation in the water column of lake plusssee [J].
Eller, G ;
Känel, LK ;
Krüger, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8925-8928
[10]   Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J].
Ettwig, Katharina F. ;
Butler, Margaret K. ;
Le Paslier, Denis ;
Pelletier, Eric ;
Mangenot, Sophie ;
Kuypers, Marcel M. M. ;
Schreiber, Frank ;
Dutilh, Bas E. ;
Zedelius, Johannes ;
de Beer, Dirk ;
Gloerich, Jolein ;
Wessels, Hans J. C. T. ;
van Alen, Theo ;
Luesken, Francisca ;
Wu, Ming L. ;
van de Pas-Schoonen, Katinka T. ;
den Camp, Huub J. M. Op ;
Janssen-Megens, Eva M. ;
Francoijs, Kees-Jan ;
Stunnenberg, Henk ;
Weissenbach, Jean ;
Jetten, Mike S. M. ;
Strous, Marc .
NATURE, 2010, 464 (7288) :543-+