Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement

被引:74
作者
Hills, Camilla B. [1 ]
Li, Chengdao [1 ,2 ]
机构
[1] Murdoch Univ, Western Barley Genet Alliance, Western Australian State Agr Biotechnol Ctr, Sch Vet & Life Sci, Perth, WA, Australia
[2] Dept Agr & Food Western Australia, S Perth, WA, Australia
关键词
flowering time; phenology; photoperiod; yield; barley; wheat; maize; rice; BARLEY HORDEUM-VULGARE; SPRING GROWTH HABIT; ATMOSPHERIC CARBON-DIOXIDE; PSEUDO-RESPONSE REGULATORS; WATER-USE EFFICIENCY; CIRCADIAN CLOCK; NATURAL VARIATION; ELEVATED CO2; HEADING DATE; LOCUS-T;
D O I
10.3389/fpls.2016.01906
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
引用
收藏
页数:23
相关论文
共 200 条
[1]   FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].
Abe, M ;
Kobayashi, Y ;
Yamamoto, S ;
Daimon, Y ;
Yamaguchi, A ;
Ikeda, Y ;
Ichinoki, H ;
Notaguchi, M ;
Goto, K ;
Araki, T .
SCIENCE, 2005, 309 (5737) :1052-1056
[2]   Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1 [J].
Alter, Philipp ;
Bircheneder, Susanne ;
Zhou, Liang-Zi ;
Schlueter, Urte ;
Gahrtz, Manfred ;
Sonnewald, Uwe ;
Dresselhaus, Thomas .
PLANT PHYSIOLOGY, 2016, 172 (01) :389-404
[3]   The genetic basis of flowering responses to seasonal cues [J].
Andres, Fernando ;
Coupland, George .
NATURE REVIEWS GENETICS, 2012, 13 (09) :627-639
[4]  
[Anonymous], 2011, FIELD CROP RES, DOI DOI 10.1016/j.fcr.2011.06.020
[5]  
[Anonymous], EXPLORATION IDENTIFI
[6]  
[Anonymous], CLIMATE CHANGE 2013
[7]  
[Anonymous], 2012, EVID BASED COMPLEMEN, DOI DOI 10.1155/2012/429412
[8]  
[Anonymous], PLANT MOL BIOL REP
[9]   Earliness per se and its dependence upon temperature in diploid wheat lines differing in the major gene Eps-Am1 alleles [J].
Appendino, ML ;
Slafer, GA .
JOURNAL OF AGRICULTURAL SCIENCE, 2003, 141 :149-154
[10]   Vernalization requires epigenetic silencing of FLC by histone methylation [J].
Bastow, R ;
Mylne, JS ;
Lister, C ;
Lippman, Z ;
Martienssen, RA ;
Dean, C .
NATURE, 2004, 427 (6970) :164-167