A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam

被引:33
作者
Breuer, B
Horák, J
McKenna, PJ [1 ]
Pluma, M
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Karlsruhe, Math Inst 1, D-76218 Karlsruhe, Germany
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
travelling waves; existence; multiplicity; computer-assisted proof;
D O I
10.1016/j.jde.2005.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a nonlinear beam equation with exponential nonlinearity, we prove existence of at least 36 travelling wave solutions for the specific wave speed c = 1.3. This complements the result in [Smets, van den Berg, Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations, J. Differential Equations 184 (2002) 78-96.] stating that for almost all c is an element of (0, root 2) there exists at least one solution. Our proof makes heavy use of computer assistance: starting from numerical approximations, we use a fixed point argument to prove existence of solutions "close to" the computed approximations. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 97
页数:38
相关论文
共 24 条
[1]  
BEHNKE H, 1987, COMPUTING S, V6, P69
[2]   Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof [J].
Breuer, B ;
McKenna, PJ ;
Plum, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (01) :243-269
[3]  
Champneys A. R., 1993, ADV COMPUT MATH, V1, P81, DOI [10.1007/BF02070822, DOI 10.1007/BF02070822]
[4]   On solitary waves of a piecewise linear suspended beam model [J].
Champneys, AR ;
McKenna, PJ .
NONLINEARITY, 1997, 10 (06) :1763-1782
[5]   Solitary waves in nonlinear beam equations: Stability, fission and fusion [J].
Champneys, AR ;
McKenna, PJ ;
Zegeling, PA .
NONLINEAR DYNAMICS, 2000, 21 (01) :31-53
[6]   Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations [J].
Chen, Y ;
McKenna, PJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (02) :325-355
[7]   A MOUNTAIN PASS METHOD FOR THE NUMERICAL-SOLUTION OF SEMILINEAR ELLIPTIC PROBLEMS [J].
CHOI, YS ;
MCKENNA, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (04) :417-437
[8]   Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equation [J].
Day, S ;
Hiraoka, Y ;
Mischaikow, K ;
Ogawa, T .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (01) :1-31
[9]  
Horák J, 2003, PROG NONLIN, V54, P197
[10]  
Lehmann N. J., 1963, Numer. Math., V5, P246