Category of trees in representation theory of quantum algebras

被引:0
作者
Moskaliuk, N. M. [1 ]
Moskaliuk, S. S. [1 ]
机构
[1] NAS Ukraine, Bogolyubov Inst Theoret Phys, Kiev, Ukraine
关键词
Atomic Nucleus; Hopf Algebra; Representation Theory; Direct Transition; Total Momentum;
D O I
10.1134/S1063778813090111
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
New applications of categorical methods are connected with new additional structures on categories. One of such structures in representation theory of quantum algebras, the category of Kuznetsov-Smorodinsky-Vilenkin-Smirnov (KSVS) trees, is constructed, whose objects are finite rooted KSVS trees and morphisms generated by the transition from a KSVS tree to another one.
引用
收藏
页码:1257 / 1267
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1998, Categories for the working mathematician
[2]  
Kuznetsov G. I., 2000, Hadronic Journal Supplement, V15, P349
[3]  
Kuznetsov G. I., 1995, P 11 INT GUTS WORKSH, P23
[4]  
Kuznetsov G. L., 2001, Hadronic Journal, V24, P17
[5]   NONINVARIANCE GROUPS IN SECOND-QUANTIZATION PICTURE AND THEIR APPLICATIONS [J].
MOSHINSKY, M ;
QUESNE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (05) :1631-+
[6]  
Moskaliuk S. S., 2004, Hadronic Journal, V27, P399
[7]  
Moskaliuk S. S., 2001, Hadronic Journal, V24, P129
[8]  
Moskaliuk S.S., 2006, CAYLEY KLEIN GROUPS
[9]  
Moskaliuk S. S., 1998, UKR PHYS J, V43, P162
[10]  
Moskaliuk SS, 1998, 5TH WIGNER SYMPOSIUM, PROCEEDINGS, P162