2+1 gravity on the conformal sphere

被引:12
作者
Gryb, Sean [1 ]
Mercati, Flavio [2 ,3 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
关键词
GRAVITATIONAL DEGREES; RELATIVITY; INVARIANCE; DIMENSIONS; REDUCTION; GEOMETRY; DYNAMICS;
D O I
10.1103/PhysRevD.87.064006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that there are two equivalent first order descriptions of 2 + 1 gravity with a nonzero cosmological constant. One is the well-known spacetime description, and the other is in terms of evolving conformal geometry. The key tool that links these pictures is Cartan geometry, a generalization of Riemannian geometry that allows for geometries locally modeled off arbitrary homogeneous spaces. The two different interpretations suggest two distinct phase space reductions. The spacetime picture leads to the 2 + 1 formulation of general relativity due to Arnowitt, Deser, and Misner, while the conformal picture leads to shape dynamics. Cartan geometry thus provides an alternative to symmetry trading for explaining the equivalence of general relativity and shape dynamics. DOI: 10.1103/PhysRevD.87.064006
引用
收藏
页数:13
相关论文
共 38 条
  • [1] The physical gravitational degrees of freedom
    Anderson, E
    Barbour, J
    Foster, BZ
    Kelleher, B
    Murchadha, NO
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (09) : 1795 - 1802
  • [2] [Anonymous], ARCH NEERLANDAISES 2
  • [3] [Anonymous], 1898, Rev. Metaphys. Morale
  • [4] Barbour J, 2004, LECT NOTES PHYS, V633, P15
  • [5] Barbour J., ARXIV11050183
  • [6] Bodendorfer N., ARXIV12036525
  • [7] Bodendorfer N., ARXIV12036526
  • [8] Conformal field theory, (2+1)-dimensional gravity and the BTZ black hole
    Carlip, S
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (12) : R85 - R123
  • [9] Carlip S., 1998, Quantum Gravity in 2+1 Dimensions
  • [10] FIXATION OF COORDINATES IN THE HAMILTONIAN THEORY OF GRAVITATION
    DIRAC, PAM
    [J]. PHYSICAL REVIEW, 1959, 114 (03): : 924 - 930