Effective Modeling of Magnetized Graphene in the Finite-Difference Time-Domain Method

被引:0
作者
Feizi, Mina [1 ]
Nayyeri, Vahid [1 ]
Ramahi, Omar M. [2 ]
机构
[1] Iran Univ Sci & Technol, Antenna & Microwave Res Lab, Tehran, Iran
[2] Univ Waterloo, Sch Elect & Comp Engn, Waterloo, ON, Canada
来源
2017 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP) | 2017年
关键词
conducting sheet boundary condition; finite-difference time-domain (FDTD) method; magnetized graphene; FDTD; SIMULATION; DEVICES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel approach for modeling magnetized graphene in the Finite-Difference Time-Domain method by applying an anisotropic conducting boundary condition. Magnetize graphene sheet is modeled as a dispersive anisotropic conducting surface. Then applying the conducting surface boundary condition, the sheet is incorporated into the FDTD method. The proposed method is validated through a numerical example and comparing the results with analytic solution.
引用
收藏
页数:3
相关论文
共 10 条
[1]   Efficient Modeling and Simulation of Graphene Devices With the LOD-FDTD Method [J].
Ahmed, Iftikhar ;
Khoo, Eng Huat ;
Li, Erping .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (06) :306-308
[2]   Consistent Study of Graphene Structures Through the Direct Incorporation of Surface Conductivity [J].
Bouzianas, Georgios D. ;
Kantartzis, Nikolaos V. ;
Yioultsis, Traianos V. ;
Tsiboukis, Theodoros D. .
IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) :161-164
[3]   Optimal Modeling of Infinite Graphene Sheets via a Class of Generalized FDTD Schemes [J].
Bouzianas, Georgios D. ;
Kantartzis, Nikolaos V. ;
Antonopoulos, Christos S. ;
Tsiboukis, Theodoros D. .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) :379-382
[4]   On the universal ac optical background in graphene [J].
Gusynin, V. P. ;
Sharapov, S. G. ;
Carbotte, J. P. .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]  
Hanson G. W., 2008, IEEE T ANTENN PROPAG, V56
[6]   FDTD Modeling of Graphene Devices Using Complex Conjugate Dispersion Material Model [J].
Lin, Hai ;
Pantoja, Mario F. ;
Angulo, Luis D. ;
Alvarez, Jesus ;
Martin, Rafael G. ;
Garcia, Salvador G. .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (12) :612-614
[7]   Pade approximant spectral fit for FDTD simulation of graphene in the near infrared [J].
Mock, Adam .
OPTICAL MATERIALS EXPRESS, 2012, 2 (06) :771-781
[8]   Wideband Modeling of Graphene Using the Finite-Difference Time-Domain Method [J].
Nayyeri, Vahid ;
Soleimani, Mohammad ;
Ramahi, Omar M. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (12) :6107-6114
[9]   Modeling Graphene in the Finite-Difference Time-Domain Method Using a Surface Boundary Condition [J].
Nayyeri, Vahid ;
Soleimani, Mohammad ;
Ramahi, Omar M. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (08) :4176-4182
[10]   Matrix Exponential FDTD Modeling of Magnetized Graphene Sheet [J].
Wang, Xiang-Hua ;
Yin, Wen-Yan ;
Chen, Zhizhang .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 :1129-1132