Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes

被引:97
作者
Jaskari, Joel [1 ]
Sahlsten, Jaakko [1 ]
Jarnstedt, Jorma [2 ]
Mehtonen, Helena [2 ]
Karhu, Kalle [3 ]
Sundqvist, Osku [3 ]
Hietanen, Ari [3 ]
Varjonen, Vesa [3 ]
Mattila, Vesa [3 ]
Kaski, Kimmo [1 ,4 ]
机构
[1] Aalto Univ, Sch Sci, Aalto 00076, Finland
[2] Tampere Univ Hosp, Med Imaging Ctr, Dept Radiol, Teiskontie 35, Tampere 33520, Finland
[3] Planmeca Oy, Asentajankatu 6, Helsinki 00880, Finland
[4] Alan Turing Inst, British Lib, 96 Euston Rd, London NW1 2DB, England
关键词
CT;
D O I
10.1038/s41598-020-62321-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate localisation of mandibular canals in lower jaws is important in dental implantology, in which the implant position and dimensions are currently determined manually from 3D CT images by medical experts to avoid damaging the mandibular nerve inside the canal. Here we present a deep learning system for automatic localisation of the mandibular canals by applying a fully convolutional neural network segmentation on clinically diverse dataset of 637 cone beam CT volumes, with mandibular canals being coarsely annotated by radiologists, and using a dataset of 15 volumes with accurate voxel-level mandibular canal annotations for model evaluation. We show that our deep learning model, trained on the coarsely annotated volumes, localises mandibular canals of the voxel-level annotated set, highly accurately with the mean curve distance and average symmetric surface distance being 0.56 mm and 0.45 mm, respectively. These unparalleled accurate results highlight that deep learning integrated into dental implantology workflow could significantly reduce manual labour in mandibular canal annotations.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching [J].
Abdolali, Fatemeh ;
Zoroofi, Reza Aghaeizadeh ;
Abdolali, Maryam ;
Yokota, Futoshi ;
Otake, Yoshito ;
Sato, Yoshinobu .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (04) :581-593
[2]  
Abdolali F, 2014, 2014 21TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), P7, DOI 10.1109/ICBME.2014.7043884
[3]  
Bakator Mihalj, 2018, Multimodal Technologies and Interaction, V2, DOI 10.3390/mti2030047
[4]  
Cicero M., 2017, INVESTIGATIVE RADIOL, V52
[5]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[6]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[7]   Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels [J].
Han, Bo ;
Yao, Quanming ;
Yu, Xingrui ;
Niu, Gang ;
Xu, Miao ;
Hu, Weihua ;
Tsang, Ivor W. ;
Sugiyama, Masashi .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
[8]  
He Kaiming, 2016, LECT NOTES COMPUT SC, P630, DOI [DOI 10.1109/CVPR.2016.90, DOI 10.1007/978-3-319-46493-0_38]
[9]  
Ioffe Sergey, 2015, P MACHINE LEARNING R, V37, P448, DOI DOI 10.48550/ARXIV.1502.03167
[10]  
Kainmueller D, 2009, LECT NOTES COMPUT SC, V5762, P76, DOI 10.1007/978-3-642-04271-3_10