Measurement Back-Action in Stacked Graphene Quantum Dots

被引:46
作者
Bischoff, D. [1 ]
Eich, M. [1 ]
Zilberberg, O. [2 ]
Roessler, C. [1 ]
Ihn, T. [1 ]
Ensslin, K. [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Graphene nanoribbon; van der Waals heterostructure; measurement back-action; charge detection; capacitively coupled double dot; COULOMB DRAG; BLOCKADE;
D O I
10.1021/acs.nanolett.5b02167
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present an electronic transport experiment in graphene where both classical and quantum mechanical charge detector back-action on a quantum dot are investigated. The device consists of two stacked graphene quantum dots separated by a thin layer of boron nitride. This device is fabricated by van der Waals stacking and is equipped with separate source and drain contacts to both dots. By applying a finite bias to one quantum dot, a current is induced in the other unbiased dot. We present an explanation of the observed measurement-induced current based on strong capacitive coupling and energy dependent tunneling barriers, breaking the spatial symmetry in the unbiased system. This is a special feature of graphene-based quantum devices. The experimental observation of transport in classically forbidden regimes is understood by considering higher-order quantum mechanical back-action mechanisms.
引用
收藏
页码:6003 / 6008
页数:6
相关论文
共 53 条
  • [1] Quantum effects in Coulomb blockade
    Aleiner, IL
    Brouwer, PW
    Glazman, LI
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 358 (5-6): : 309 - 440
  • [2] Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
  • [3] Beenakker C.W.J., 1992, SINGLE CHARGE TUNELL
  • [4] BEENAKKER CWJ, 1991, SOLID STATE PHYS, V44, P1
  • [5] Localized charge carriers in graphene nanodevices
    Bischoff, D.
    Varlet, A.
    Simonet, P.
    Eich, M.
    Overweg, H. C.
    Ihn, T.
    Ensslin, K.
    [J]. APPLIED PHYSICS REVIEWS, 2015, 2 (03):
  • [6] Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon
    Bischoff, D.
    Eich, M.
    Varlet, A.
    Simonet, P.
    Ihn, T.
    Ensslin, K.
    [J]. PHYSICAL REVIEW B, 2015, 91 (11)
  • [7] Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate
    Bischoff, D.
    Libisch, F.
    Burgdoerfer, J.
    Ihn, T.
    Ensslin, K.
    [J]. PHYSICAL REVIEW B, 2014, 90 (11)
  • [8] Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions
    Bischoff, D.
    Varlet, A.
    Simonet, P.
    Ihn, T.
    Ensslin, K.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [9] Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate
    Bischoff, D.
    Kraehenmann, T.
    Droescher, S.
    Gruner, M. A.
    Barraud, C.
    Ihn, T.
    Ensslin, K.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (20)
  • [10] Strongly capacitively coupled quantum dots
    Chan, IH
    Westervelt, RM
    Maranowski, KD
    Gossard, AC
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (10) : 1818 - 1820