Suppression of chaos via control of energy flow

被引:21
作者
Guo, Shengli [1 ]
Ma, Jun [1 ,2 ]
Alsaedi, Ahmed [3 ]
机构
[1] Lanzhou Univ Technol, Dept Phys, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Gansu, Peoples R China
[3] King Abdulaziz Univ, Dept Math, NAAM Res Grp, Jeddah, Saudi Arabia
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 90卷 / 03期
基金
中国国家自然科学基金;
关键词
Hamilton energy; feedback; chaos; phase compression; control; SYNCHRONIZATION; ATTRACTORS; ORDER; NEURONS;
D O I
10.1007/s12043-018-1534-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a newvariable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.
引用
收藏
页数:7
相关论文
共 48 条
[1]  
[Anonymous], 2006, SIAM J SCI COMPUT, DOI DOI 10.1137/S1064827501387826
[2]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[3]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[4]   A Novel Clustering Method Based on Quasi-Consensus Motions of Dynamical Multiagent Systems [J].
Cai, Ning ;
Diao, Chen ;
Khan, M. Junaid .
COMPLEXITY, 2017,
[5]   Dynamic behaviours and control of fractional-order memristor-based system [J].
Chen, Liping ;
He, Yigang ;
Lv, Xiao ;
Wu, Ranchao .
PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (01) :91-104
[6]   Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos [J].
Dadras, Sara ;
Momeni, Hamid Reza ;
Qi, Guoyuan .
NONLINEAR DYNAMICS, 2010, 62 (1-2) :391-405
[7]   An adaptive chaos synchronization scheme applied to secure communication [J].
Feki, M .
CHAOS SOLITONS & FRACTALS, 2003, 18 (01) :141-148
[8]   Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators [J].
Gerardo de la Fraga, Luis ;
Tlelo-Cuautle, Esteban .
NONLINEAR DYNAMICS, 2014, 76 (02) :1503-1515
[9]   Multi-scroll hidden attractors in improved Sprott A system [J].
Hu, Xiaoyu ;
Liu, Chongxin ;
Liu, Ling ;
Ni, Junkang ;
Li, Shilei .
NONLINEAR DYNAMICS, 2016, 86 (03) :1725-1734
[10]   Chaos in three-dimensional hybrid systems and design of chaos generators [J].
Huan, Songmei ;
Li, Qingdu ;
Yang, Xiao-Song .
NONLINEAR DYNAMICS, 2012, 69 (04) :1915-1927