Theoretical Investigation of Paramagnetic NMR Shifts in Transition Metal Acetylacetonato Complexes: Analysis of Signs, Magnitudes, and the Role of the Covalency of Ligand-Metal Bonding

被引:53
作者
Pritchard, Ben [1 ]
Autschbach, Jochen [1 ]
机构
[1] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
关键词
DENSITY-FUNCTIONAL THEORY; ORDER REGULAR APPROXIMATION; NUCLEAR-MAGNETIC-RESONANCE; CHROMIUM(III) COMPLEXES; SPECTRA; TENSORS; ENERGY; COMPUTATIONS; MOLECULES; H-1;
D O I
10.1021/ic300868v
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ligand chemical shifts are calculated and analyzed for three paramagnetic transition metal tris-acetylacetonato (acac) complexes, namely high-spin Fe(III) and Cr(III), and low-spin Ru(III), using scalar relativistic density functional theory (DFT). The signs and magnitudes of the paramagnetic NMR ligand chemical shifts are directly related to the extent of covalent acac oxygen-to-metal sigma donation involving unoccupied metal valence d(sigma) acceptor orbitals. The role of delocalization of metal-centered spin density over the ligand atoms plays a minor secondary role. Of particular interest is the origin of the sign and magnitude of the methyl carbon chemical shift in the acac ligands, and the role played by the DFT delocalization error when calculating such shifts. It is found that the alpha versus beta spin balance of oxygen sigma donation to metal valence d acceptor orbitals is responsible for the sign and the magnitude of the ligand methyl carbon chemical shift. A problematic case is the methyl carbon shift of Fe(acac)(3). Most functionals produce shifts in excess of 1400 ppm, whereas the experimental shift is approximately 279 ppm. Range-separated hybrid functionals that are optimally tuned for Fe(acac)(3) based on DFT energetic criteria predict a lower limit of about 2000 ppm for the methyl carbon shift of the high-spin electronic configuration. Since the experimental value is based on a very strongly broadened signal it is possibly unreliable.
引用
收藏
页码:8340 / 8351
页数:12
相关论文
共 62 条
[51]   Does a Molecule-Specific Density Functional Give an Accurate Electron Density? The Challenging Case of the CuCl Electric Field Gradient [J].
Srebro, Monika ;
Autschbach, Jochen .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (05) :576-581
[52]   Tuned Range-Separated Time-Dependent Density Functional Theory Applied to Optical Rotation [J].
Srebro, Monika ;
Autschbach, Jochen .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (01) :245-256
[53]   Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles [J].
Stein, Tamar ;
Kronik, Leeor ;
Baer, Roi .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (24)
[54]   Spectroscopic calibration of modern density functional methods using [CuCl4]2- [J].
Szilagyi, RK ;
Metz, M ;
Solomon, EI .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (12) :2994-3007
[55]   NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations [J].
Valiev, M. ;
Bylaska, E. J. ;
Govind, N. ;
Kowalski, K. ;
Straatsma, T. P. ;
Van Dam, H. J. J. ;
Wang, D. ;
Nieplocha, J. ;
Apra, E. ;
Windus, T. L. ;
de Jong, Wa. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) :1477-1489
[56]   RELATIVISTIC REGULAR 2-COMPONENT HAMILTONIANS [J].
VANLENTHE, E ;
BAERENDS, EJ ;
SNIJDERS, JG .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (06) :4597-4610
[57]   TEMPERATURE-DEPENDENT MAGNETIC CIRCULAR-DICHROISM OF FE(ACAC)3 [J].
VLIEK, RME ;
ZANDSTRA, PJ .
MOLECULAR PHYSICS, 1976, 32 (01) :151-159
[58]  
Weinhold F., 1998, Encyclopedia of Computational Chemistry, P1792
[59]   Hyperfine-Shifted 13C Resonance Assignments in an Iron-Sulfur Protein with Quantum Chemical Verification: Aliphatic C-H•••S 3-Center-4-Electron Interactions [J].
Westler, William M. ;
Lin, I-Jin ;
Perczel, Andras ;
Weinhold, Frank ;
Markley, John L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1310-1316
[60]   A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) [J].
Yanai, T ;
Tew, DP ;
Handy, NC .
CHEMICAL PHYSICS LETTERS, 2004, 393 (1-3) :51-57