Optimal stretching for lattice points and eigenvalues

被引:7
作者
Laugesen, Richard S. [1 ]
Liu, Shiya [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
ARKIV FOR MATEMATIK | 2018年 / 56卷 / 01期
关键词
lattice points; planar convex domain; p-ellipse; Lame curve; spectral optimization; Laplacian; Dirichlet eigenvalues; Neumann eigenvalues; LAPLACIAN EIGENVALUES; ASYMPTOTIC-BEHAVIOR; DIRICHLET; DOMAINS; CUBOIDS;
D O I
10.4310/ARKIV.2018.v56.n1.a8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We aim to maximize the number of first-quadrant lattice points in a convex domain with respect to reciprocal stretching in the coordinate directions. The optimal domain is shown to be asymptotically balanced, meaning that the stretch factor approaches 1 as the "radius" approaches infinity. In particular, the result implies that among all p-ellipses (or Lame curves), the p-circle encloses the most first-quadrant lattice points as the radius approaches infinity, for 1<p<infinity. The case p=2 corresponds to minimization of high eigenvalues of the Dirichlet Laplacian on rectangles, and so our work generalizes a result of Antunes and Freitas. Similarly, we generalize a Neumann eigenvalue maximization result of van den Berg, Bucur and Gittins. Further, Ariturk and Laugesen recently handled 0<p<1 by building on our results here. The case p=1 remains open, and is closely related to minimizing energy levels of harmonic oscillators: which right triangles in the first quadrant with two sides along the axes will enclose the most lattice points, as the area tends to infinity?
引用
收藏
页码:111 / 145
页数:35
相关论文
共 23 条
[1]  
[Anonymous], 2017, THESIS
[2]   Optimisation of Eigenvalues of the Dirichlet Laplacian with a Surface Area Restriction [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 73 (02) :313-328
[3]   Optimal spectral rectangles and lattice ellipses [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2150)
[4]   Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) :235-257
[5]   Optimal stretching for lattice points under convex curves [J].
Ariturk, Sinan ;
Laugesen, Richard S. .
PORTUGALIAE MATHEMATICA, 2017, 74 (02) :91-114
[6]   Asymptotic behaviour of optimal spectral planar domains with fixed perimeter [J].
Bucur, Dorin ;
Freitas, Pedro .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
[7]   Extremal eigenvalues of the Laplacian on Euclidean domains and closed surfaces [J].
Colbois, Bruno ;
El Soufi, Ahmad .
MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (1-2) :529-546
[8]   Asymptotic Behaviour of Extremal Averages of Laplacian Eigenvalues [J].
Freitas, Pedro .
JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (06) :1511-1518
[9]   Asymptotic Behaviour of Cuboids Optimising Laplacian Eigenvalues [J].
Gittins, Katie ;
Larson, Simon .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 89 (04) :607-629
[10]  
Huxley M. N., 1996, Area, Lattice points, and Exponential sums, V13