Optimization of thermoacoustic refrigerator using response surface methodology

被引:25
作者
Hariharan, N. M. [1 ]
Sivashanmugam, P. [1 ]
Kasthurirengan, S. [2 ]
机构
[1] Natl Inst Technol, Dept Chem Engn, Tiruchirappalli 620015, Tamil Nadu, India
[2] Indian Inst Sci, Ctr Cryogen Technol, Bangalore 560012, Karnataka, India
关键词
Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC); optimization; Response Surface Methodology (RSM); temperature difference; thermoacoustic refrigerator (TAR); DESIGN;
D O I
10.1016/S1001-6058(13)60340-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.
引用
收藏
页码:72 / 82
页数:11
相关论文
共 17 条
[1]   The impact of gas blockage on the performance of a thermoacoustic refrigerator [J].
Akhavanbazaz, Masoud ;
Siddiqui, M. H. Kamran ;
Bhat, Rama B. .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2007, 32 (01) :231-239
[2]   Nonlinear temperature field near the stack ends of a standing-wave thermoacoustic refrigerator [J].
Berson, Arganthaeel ;
Poignand, Gaeelle ;
Blanc-Benon, Philippe ;
Comte-Bellot, Genevieve .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (21-22) :4730-4735
[3]  
Coleman H.W., 1989, EXPT UNCERTAINTY ANA, P189
[4]   Optimization of thermoacoustic primemover using response surface methodology [J].
Hariharan, N. M. ;
Sivashanmugam, P. ;
Kasthurirengan, S. .
HVAC&R RESEARCH, 2012, 18 (05) :890-903
[5]   Numerical simulation and parameter optimization of thermo-acoustic refrigerator driven at large amplitude [J].
Ke, Han-Bing ;
Liu, Ying-Wen ;
He, Ya-Ling ;
Wang, Yong ;
Huang, Jing .
CRYOGENICS, 2010, 50 (01) :28-35
[6]   Experimental study on the performance of the thermoacoustic refrigerating system [J].
Nsofor, Emmanuel C. ;
Ali, Azrai .
APPLIED THERMAL ENGINEERING, 2009, 29 (13) :2672-2679
[7]   Evaluation of standing-wave thermoacoustic cycles for cooling applications [J].
Paek, Insu ;
Braun, James E. ;
Mongeau, Luc .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2007, 30 (06) :1059-1071
[8]   Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow [J].
Piccolo, A. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (21-22) :4518-4530
[9]   The experimental studies of thermoacoustic cooler [J].
Sakamoto, S ;
Watanabe, Y .
ULTRASONICS, 2004, 42 (1-9) :53-56
[10]  
Sivalingam A, 2011, CHEM BIOCHEM ENG Q, V25, P171