Grand Lebesgue spaces with respect to measurable functions

被引:66
作者
Capone, Claudia [1 ]
Formica, Maria Rosaria [2 ]
Giova, Raffaella [2 ]
机构
[1] CNR, Ist Applicaz Calcolo Mauro Picone, Sez Napoli, I-80131 Naples, Italy
[2] Univ Napoli Parthenope, Dipartimento Stat & Matemat Ric Econ, I-80133 Naples, Italy
关键词
Grand Lebesgue spaces; Banach function spaces; Rearrangement-invariant spaces; Function norm; Embedding results; Hardy inequality; PARABOLIC EQUATIONS; SOBOLEV SPACES; INTEGRABILITY; REGULARITY;
D O I
10.1016/j.na.2013.02.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity. Given Omega subset of R-n a measurable set of finite Lebesgue measure, the norm of the grand Lebesgue spaces L-p) (Omega) is given by vertical bar f vertical bar(Lp)) ((Omega)) = (0<epsilon<p-1)sup epsilon(1/p-epsilon) (1/vertical bar Omega vertical bar integral(Omega) vertical bar f vertical bar(p-epsilon) dx)(1/p-epsilon) In this paper we consider the norm vertical bar f(vertical bar Lp)),delta(Omega) obtained replacing epsilon(1/p-epsilon)by a generic nonnegative measurable function delta(epsilon). We find necessary and sufficient conditions on delta in order to get a functional equivalent to a Banach function norm, and we determine the "interesting" class B-p, of functions delta, with the property that every generalized function norm is equivalent to a function norm built with delta is an element of B-p. We then define the L-p),L-delta (Omega) spaces, prove some embedding results and conclude with the proof of the generalized Hardy inequality. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 2005, J. Funct. Spaces, DOI 10.1155/2005/192538
[2]  
Bennett C., 1988, Interpolation of operators
[3]   Some Dirichlet problems with data in large Sobolev spaces [J].
Boccardo, L .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12) :1269-1272
[4]  
Capone C, 2008, MATH SCAND, V102, P131
[5]   A direct approach to the duality of grand and small Lebesgue spaces [J].
Di Fratta, Giovanni ;
Fiorenza, Alberto .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) :2582-2592
[6]  
Fiorenza A, 1998, STUD MATH, V127, P223
[7]   Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications [J].
Fiorenza, A ;
Rakotoson, JM .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) :187-203
[8]  
Fiorenza A, 2004, Z ANAL ANWEND, V23, P657
[9]   Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data [J].
Fiorenza, A ;
Mercaldo, A ;
Rakotoson, JM .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (04) :893-906
[10]   Regularity and comparison results in Grand Sobolev spaces for parabolic equations with measure data [J].
Fiorenza, A ;
Mercaldo, A ;
Rakotoson, JM .
APPLIED MATHEMATICS LETTERS, 2001, 14 (08) :979-981