An expression of spectral radius via Aluthge transformation

被引:54
作者
Yamazaki, T [1 ]
机构
[1] Kanagawa Univ, Dept Math, Yokohama, Kanagawa 2218686, Japan
关键词
Aluthge transformation; Heinz inequality; spectral radius;
D O I
10.1090/S0002-9939-01-06283-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an operator T is an element of B(H), the Aluthge transformation of T is defined by (T) over tilde = \T\1/ 2U\T\1/ 2. And also for a natural number n, then-th Aluthge transformation of T is defined by (T) over tilde (n) = ((Tn-1) over tilde and (T) over tilde (1) = (t) over tilde. In this paper, we shall show [GRAPHICS] where r(T) is the spectral radius.
引用
收藏
页码:1131 / 1137
页数:7
相关论文
共 9 条
[1]   ON P-HYPONORMAL OPERATORS FOR 0 LESS-THAN P LESS-THAN 1 [J].
ALUTHGE, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (03) :307-315
[2]   w-Hyponormal operators [J].
Aluthge, A ;
Wang, DM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 36 (01) :1-10
[3]  
FUJII M., 1994, NIHONKAI MATH J, V5, P61
[4]   Further extensions of Aluthge transformation on p-hyponormal operators [J].
Furuta, T ;
Yanagida, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (01) :122-125
[5]  
HEINZ E., 1951, Math. Ann., V123, P415
[6]   A note on p-hyponormal operators [J].
Huruya, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) :3617-3624
[7]  
Jung IB, 2000, INTEGR EQUAT OPER TH, V37, P437
[8]   On log-hyponormal operators [J].
Tanahashi, K .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (03) :364-372
[9]  
YAMAZAKI T, CHARACTERIZATIONS LO