Numerical methods for parametric model reduction in the simulation of disk brake squeal

被引:30
作者
Graebner, Nils [2 ]
Mehrmann, Volker [1 ]
Quraishi, Sarosh [1 ]
Schroeder, Christian [1 ]
von Wagner, Utz [2 ]
机构
[1] TU Berlin, Inst Math, MA4-5,Str 17 Juni 136, D-10623 Berlin, Germany
[2] TU Berlin, Chair Mechatron & Machine Dynam, Dept Appl Mech, MS1,Einsteinufer 5, D-10587 Berlin, Germany
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2016年 / 96卷 / 12期
关键词
Brake squeal; quadratic eigenvalue problem; complex eigenvalue analysis; model reduction; damped systems; modeling errors; proper orthogonal decomposition; EIGENVALUE;
D O I
10.1002/zamm.201500217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present numerical methods for model reduction in the numerical simulation of disk brake squeal. Automotive disk brake squeal is a high frequency noise phenomenon based on self excited vibrations. Our method is based on a variation of the proper orthogonal decomposition method and involves the solution of a large scale, parametric eigenvalue problem. Several important challenges arise, some of which can be traced back to the finite element modeling stage. Compared to the current industrial standard our new approach is more accurate in vibration prediction and achieves a better reduction in model size. This comes at the price of an increased computational cost, but it still gives useful results when the classical modal reduction method fails to do so. We illustrate the results with several numerical experiments, some from real industrial models, some from simpler academic models. These results indicate where improvements of the current black box industrial codes are advisable. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1388 / 1405
页数:18
相关论文
共 48 条
[1]   Acoustics of friction [J].
Akay, A .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 111 (04) :1525-1548
[2]  
[Anonymous], 2014, MATLAB VERS R2014B
[3]  
[Anonymous], 1989, SAE T
[4]  
Bai Z., 2000, SOC IND APPL MATH
[5]   LINEARIZATION OF DAES ALONG TRAJECTORIES [J].
CAMPBELL, SL .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (01) :70-84
[6]  
Davis T. A., 2006, SOC IND APPL MATH, V2
[7]  
Dowson D., 1998, History of Tribology
[8]   THE SPECTRAL TRANSFORMATION LANCZOS METHOD FOR THE NUMERICAL-SOLUTION OF LARGE SPARSE GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS [J].
ERICSSON, T ;
RUHE, A .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1251-1268
[9]   Normwise scaling of second order polynomial matrices [J].
Fan, HY ;
Lin, WW ;
Van Dooren, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :252-256
[10]  
Golub GH, 2010, PRINC SER APPL MATH, P1