Coarse amenability versus paracompactness

被引:5
作者
Cencelj, M. [1 ]
Dydak, J. [2 ]
Vavpetic, A. [3 ]
机构
[1] Univ Ljubljana, IMFM, SI-1111 Ljubljana, Slovenia
[2] Univ Tennessee, Knoxville, TN 37996 USA
[3] Univ Ljubljana, Fak Matemat Fiziko, SI-1111 Ljubljana, Slovenia
关键词
Amenability; asymptotic dimension; coarse geometry; Lipschitz maps; paracompactness; Property A; EXPANDER GRAPHS; PROPERTY; SPACES;
D O I
10.1142/S1793525314500034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent research in coarse geometry revealed similarities between certain concepts of analysis, large scale geometry, and topology. Property A of Yu is the coarse analog of amenability for groups and its generalization (exact spaces) was later strengthened to be the large scale analog of paracompact spaces using partitions of unity. In this paper we go deeper into divulging analogies between coarse amenability and paracompactness. In particular, we define a new coarse analog of paracompactness modeled on the defining characteristics of expanders. That analog gives an easy proof of three categories of spaces being coarsely non-amenable: expander sequences, graph spaces with girth approaching infinity, and unions of powers of a finite nontrivial group.
引用
收藏
页码:125 / 152
页数:28
相关论文
共 29 条
[1]  
[Anonymous], 1944, J. Math. Pures Appl
[2]  
ARENS R, 1950, PORT MATH, V9, P141
[3]   Coarse Non-Amenability and Coarse Embeddings [J].
Arzhantseva, Goulnara ;
Guentner, Erik ;
Spakula, Jan .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (01) :22-36
[4]  
Bassalygo L.A., 1974, PROBL INFORM TRANSM, P64
[5]   METRIZATION OF TOPOLOGICAL SPACES [J].
BING, RH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (02) :175-186
[6]  
Block J., 1992, J. Am. Math. Soc, V5, P907, DOI [10.1090/S0894-0347-1992-1145337-X, DOI 10.1090/S0894-0347-1992-1145337-X, 10.2307/2152713, DOI 10.2307/2152713]
[7]  
Brodskiy N., 2008, Colloq. Math., V111, P149
[8]   Uniform local amenability [J].
Brodzki, Jacek ;
Niblo, Graham A. ;
Spakula, Jan ;
Willett, Rufus ;
Wright, Nick .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (02) :583-603
[9]   A cohomological characterisation of Yu's property A for metric spaces [J].
Brodzki, Jacek ;
Niblo, Graham A. ;
Wright, Nick .
GEOMETRY & TOPOLOGY, 2012, 16 (01) :391-432
[10]   Asymptotic dimension, property A, and Lipschitz maps [J].
Cencelj, M. ;
Dydak, J. ;
Vavpetic, A. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :561-571