Averaging operators with boundary conditions of fine-scaled structure

被引:19
作者
Belyaev, AY
Chechkin, GA
机构
[1] Russian Acad Sci, Inst Water Problems, Moscow 117901, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 117234, Russia
关键词
function space; averaging problem; Laplace operator; Dirichlet and Neumann problem; rapidly oscillating boundary conditions; small parameter; fine scaled periodic structure; perforated domain of random structure;
D O I
10.1007/BF02675355
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the averaging of boundary value problems with a small parameter in the boundary conditions. By using new notions, we prove the compactness theorem for at family of solutions. To verify the method proposed, we study a problem with rapidly varying boundary conditions in the case of a probabilistic description of the structure of the domain.
引用
收藏
页码:418 / 429
页数:12
相关论文
共 37 条
[1]  
[Anonymous], FREE BOUNDARY PROBLE
[2]  
Beliaev AY, 1996, COMMUN PUR APPL MATH, V49, P1, DOI 10.1002/(SICI)1097-0312(199601)49:1<1::AID-CPA1>3.0.CO
[3]  
2-J
[4]  
Belyaev A. G., 1992, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V32, P1258
[5]  
Belyaev A.G., 1995, MAT SBORNIK, V186, p[47, 511]
[6]  
Belyaev A. G., 1988, VESTNIK MOSCOW U 1, V6, P63
[7]  
BELYAEV AG, 1998, PUBLICATIONS LAB ANA
[8]  
Belyaev AG., 1998, SIB MAT ZH, V39, P730
[9]  
BELYAEV AG, 1990, SINGULAR PERTURBATIO
[10]  
BELYAEV AY, 1993, USP MAT NAUK, V48, P211