Development and Analysis of the Systematically Merged Atlantic Regional Temperature and Salinity Climatology for Oceanic Heat Content Estimates

被引:30
作者
Meyers, P. C. [1 ]
Shay, L. K. [2 ]
Brewster, J. K. [2 ]
机构
[1] Univ Maryland, ESSIC, Cooperat Inst Climate & Satellites, College Pk, MD 20740 USA
[2] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, Miami, FL 33149 USA
关键词
Algorithms; Altimetry; In situ oceanic observations; Operational forecasting; SEA-SURFACE TEMPERATURE; TROPICAL CYCLONE INTENSITY; WESTERN NORTH PACIFIC; GULF-OF-MEXICO; HURRICANE-OPAL; 1995; NUMERICAL SIMULATIONS; THERMAL STRUCTURE; COUPLED MODEL; WAVE WAKE; LAYER;
D O I
10.1175/JTECH-D-13-00100.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
An oceanic climatology to calculate upper-ocean thermal structure was developed for application year-round in the North Atlantic Ocean basin. The Systematically Merged Atlantic Regional Temperature and Salinity (SMARTS) Climatology is used in a two-layer model to project sea surface height anomalies (SSHA) into the water column at 1/4 degrees resolution. SMARTS blended monthly temperature and salinity fields from the World Ocean Atlas 2001 (WOA01) and Generalized Digital Environmental Model (GDEM) version 3.0 based on their performance compared to in situ measurements. Daily mean isotherm depths of 20 degrees C (D20) and 26 degrees C (D26) (and their mean ratio), reduced gravity, and mixed layer depth (MLD) were estimated from the climatology. This higher-resolution climatology resolves features in the Gulf of Mexico (GOM), including the Loop Current (LC) and eddy shedding region.Using SMARTS with satellite-derived SSHA and SST fields, daily values of isotherm depths, mixed layer depths, and ocean heat content (OHC) were calculated from 1998 to 2012. OHC is an important scalar when determining the ocean's impact on tropical cyclone intensification, because it is a better predictor of SST cooling during hurricane passage. Airborne- and ship-deployed expendable bathythermographs (XBT), long-term moorings, and Argo profiling floats provided over 50 000 thermal profiles to assess satellite retrievals of isotherm depths and OHC using the SMARTS Climatology. The OHC calculation presented in this document reduces errors basinwide by 20%, with a 35% error reduction in the GOM.
引用
收藏
页码:131 / 149
页数:19
相关论文
共 94 条
[1]  
Ali M.M., 2007, Eos, V88, P93, DOI [10.1029/2007EO080001, DOI 10.1029/2007EO080001]
[2]  
[Anonymous], THESIS U MIAMI
[3]  
Bailey R., 1994, 220 CSIRO MAR LAB
[4]   A FIELD PERFORMANCE-TEST OF THE SIPPICAN DEEP AIRCRAFT-DEPLOYED EXPENDABLE BATHYTHERMOGRAPH [J].
BANE, JM ;
SESSIONS, MH .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1984, 89 (NC3) :3615-3621
[5]  
Bao JW, 2000, MON WEATHER REV, V128, P2190, DOI 10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO
[6]  
2
[7]  
Barnes S. L., 1964, J. Appl. Meteor., V3, P396, DOI [DOI 10.1175/1520-0450(1964)003ANDLT
[8]  
0396:ATFMDIANDGT
[9]  
2.0.CO
[10]  
2, 10.1175/1520-0450(1964)003,0396:ATFMDI>2.0.CO