Scalable Fabrication of Si-Graphene Composite as Anode for Li-ion Batteries

被引:8
|
作者
Lou, Ding [1 ]
Chen, Shuyi [2 ]
Langrud, Strauss [3 ]
Razzaq, Amir Abdul [3 ]
Mao, Mingyang [1 ]
Younes, Hammad [4 ]
Xing, Weibing [3 ]
Lin, Tim [2 ,5 ]
Hong, Haiping [4 ]
机构
[1] South Dakota Sch Mines & Technol, Dept Nanosci & Nanoengn, Rapid City, SD 57701 USA
[2] Solid Energies Inc, 985 E Orangefair Ln, Anaheim, CA 92801 USA
[3] South Dakota Sch Mines & Technol, Dept Mech Engn, Energy Storage Lab, Rapid City, SD 57701 USA
[4] South Dakota Sch Mines & Technol, Dept Elect Engn, Rapid City, SD 57701 USA
[5] Bioenno Tech LLC, 3657 McFadden Ave, Santa Ana, CA 92704 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 21期
关键词
Si-graphene electrode; Li-ion batteries; anode; scalable; HIGH-CAPACITY ANODES; CARBON NANOTUBES; SILICON ANODE; NANOPARTICLES; NANOSHEETS; MEMBRANE; OXIDE;
D O I
10.3390/app122110926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A facile and scalable method is reported to fabricate Si-graphene nanocomposite as anode material for Li-ion batteries (LIBs) with high capacity and capacity retention performance. The Si-graphene electrode showed an initial discharge capacity of 1307 mAh g(-1) at a current rate of 0.1C. At the 25th cycle, the electrode retained a discharge capacity of 1270 mAh g(-1), with an excellent capacity retention of 97%. At the 50th cycle, the electrode still retained high capacity retention of 89%. The improved capacity retention of Si-graphene anode compared with Si anode is attributed to the mechanical flexibility of graphene that compromises the volume expansion of Si during the lithiation/delithiation process. The electrochemical impedance measurement further confirms the enhanced electrical conductivity and the denser solid-electrolyte-interface of the Si-graphene electrode. This fabrication approach is cost-effective and easy to scale up compared to known techniques, making it a promising candidate for commercializing Si-based anode for LIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Hollow Nanostructured Anode Materials for Li-Ion Batteries
    Liu, Jun
    Xue, Dongfeng
    NANOSCALE RESEARCH LETTERS, 2010, 5 (10): : 1525 - 1534
  • [12] MgO-Decorated Few-Layered Graphene as an Anode for Li-Ion Batteries
    Petnikota, Shaikshavali
    Rotte, Naresh K.
    Reddy, M. V.
    Srikanth, Vadali V. S. S.
    Chowdari, B. V. R.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (04) : 2301 - 2309
  • [13] Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries
    Guo, Hong
    Zhao, Hailei
    Yin, Chaoli
    Qiu, Weihua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 426 (1-2) : 277 - 280
  • [14] Manganese monoxide/titanium nitride composite as high performance anode material for rechargeable Li-ion batteries
    Xu, Gaojie
    Zhang, Lixue
    Guo, Chaowei
    Gu, Lin
    Wang, Xiaogang
    Han, Pengxian
    Zhang, Kejun
    Zhang, Chuanjian
    Cui, Guanglei
    ELECTROCHIMICA ACTA, 2012, 85 : 345 - 351
  • [15] The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries
    Liu, Wenping
    Xu, Huarui
    Qin, Haiqing
    Lv, Yanlu
    Wang, Feng
    Zhu, Guisheng
    Lin, Feng
    Wang, Lihui
    Ni, Chengyuan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (12) : 3363 - 3372
  • [16] Identification of Borophosphene/graphene heterostructure as anode for Li-ion Batteries and its origin
    Gavali, Deepak S.
    Thapa, Ranjit
    JOURNAL OF POWER SOURCES, 2023, 566
  • [17] Nanostructured anode materials for Li-ion batteries
    Zhao, Nahong
    Fu, Lijun
    Yang, Lichun
    Zhang, Tao
    Wang, Gaojun
    Wu, Yuping
    van Ree, Teunis
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2283 - 2295
  • [18] CoO Porous Nanospindles/Graphene Nanocomposites as Anode Materials for Li-Ion Batteries
    Liu, Chunping
    Liu, Jun
    Ji, Shaomin
    Zhou, Yichun
    MATERIALS FOCUS, 2012, 1 (02) : 149 - 153
  • [19] Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
    Ma, Delong
    Cao, Zhanyi
    Hu, Anming
    NANO-MICRO LETTERS, 2014, 6 (04) : 347 - 358
  • [20] Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries
    Liang, Xianqing
    Wang, Junjie
    Zhang, Siyu
    Wang, Luyang
    Wang, Weifang
    Li, Liuyan
    Wang, Haifu
    Huang, Dan
    Zhou, Wenzheng
    Guo, Jin
    APPLIED SURFACE SCIENCE, 2019, 476 : 28 - 35