Homogenization of the Poisson Equation in a Thick Periodic Junction

被引:0
|
作者
Mel'nyk, T. A. [1 ]
机构
[1] Inst Math A Univ, D-70511 Stuttgart, Germany
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 1999年 / 18卷 / 04期
关键词
Homogenization; asymptotic estimates; extension operators;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
convergence theorem and asymptotic estimates as epsilon -> 0 are proved for a solution to a mixed boundary-value problem for the Poisson equation in a junction Omega(e) of a domain Omega(0) and a large number N-2 of epsilon-periodically situated thin cylinders with thickness of order e = O(1/N) For this junction, we construct an extension operator and study its properties.
引用
收藏
页码:953 / 975
页数:23
相关论文
共 50 条
  • [1] Homogenization of the Robin problem for the Poisson equation in a thick multi-structure of type 3:2:2
    De Maio, U
    Mel'nyk, TA
    ASYMPTOTIC ANALYSIS, 2005, 41 (02) : 161 - 177
  • [2] Two-parameter homogenization for a nonlinear periodic Robin problem for the Poisson equation: a functional analytic approach
    Lanza de Cristoforis, Massimo
    Musolino, Paolo
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 63 - 110
  • [3] Two-parameter homogenization for a nonlinear periodic Robin problem for the Poisson equation: a functional analytic approach
    Massimo Lanza de Cristoforis
    Paolo Musolino
    Revista Matemática Complutense, 2018, 31 : 63 - 110
  • [4] Homogenization and correctors for the wave equation with periodic coefficients
    Casado-Diaz, Juan
    Couce-Calvo, Julio
    Maestre, Faustino
    Martin Gomez, Jose D.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (07) : 1343 - 1388
  • [5] Homogenization of the Poisson equation in a non-periodically perforated domain
    Blanc, Xavier
    Wolf, Sylvain
    ASYMPTOTIC ANALYSIS, 2022, 126 (1-2) : 129 - 155
  • [6] Homogenization of the Poisson equation with Dirichlet conditions in random perforated domains
    Calvo-Jurado, Carmen
    Casado-Diaz, Juan
    Luna-Laynez, Manuel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 : 375 - 381
  • [7] Homogenization of a semilinear variational inequality in a thick multi-level junction
    Mel'nyk, Taras A.
    Nakvasiuk, Iulia A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [8] Homogenization of a semilinear variational inequality in a thick multi-level junction
    Taras A Mel’nyk
    Iulia A Nakvasiuk
    Journal of Inequalities and Applications, 2016
  • [9] The application of non-periodic homogenization of elastic equation
    Zhang LingYun
    Sun HePing
    Xu JianQiao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (01): : 131 - 140
  • [10] Homogenization and correctors for the wave equation in non periodic perforated domains
    Donato, Patrizia
    Gaveau, Florian
    NETWORKS AND HETEROGENEOUS MEDIA, 2008, 3 (01) : 97 - 124