On semi-supervised fuzzy c-means clustering for data with clusterwise tolerance by opposite criteria

被引:6
|
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [2 ,3 ]
机构
[1] Kinki Univ, Dept Informat, Sch Sci & Engn, Higashiosaka, Osaka 5778502, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki 3058573, Japan
[3] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
关键词
Fuzzy c-means clustering; Semi-supervised clustering; Clusterwise tolerance; Pairwise constraints;
D O I
10.1007/s00500-012-0904-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new semi-supervised fuzzy c-means clustering for data with clusterwise tolerance by opposite criteria. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link, are frequently used in order to improve clustering performances. From the viewpoint of handling pairwise constraints, a new semi-supervised fuzzy c-means clustering is proposed by introducing clusterwise tolerance-based pairwise constraints. First, a concept of clusterwise tolerance-based pairwise constraints is introduced. Second, the optimization problems of the proposed method are formulated. Especially, must-link and cannot-link are handled by opposite criteria in our proposed method. Third, a new clustering algorithm is constructed based on the above discussions. Finally, the effectiveness of the proposed algorithm is verified through numerical examples.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 50 条
  • [1] On semi-supervised fuzzy c-means clustering for data with clusterwise tolerance by opposite criteria
    Yukihiro Hamasuna
    Yasunori Endo
    Soft Computing, 2013, 17 : 71 - 81
  • [2] On Semi-Supervised Fuzzy c-Means Clustering
    Yasunori, Endo
    Yukihiro, Hamasuna
    Makito, Yamashiro
    Sadaaki, Miyamoto
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1119 - +
  • [3] Semi-supervised fuzzy c-means clustering of biological data
    Ceccarelli, M
    Maratea, A
    FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 259 - 266
  • [4] Safe Semi-Supervised Fuzzy C-Means Clustering
    Gan, Haitao
    IEEE ACCESS, 2019, 7 : 95659 - 95664
  • [5] A new Semi-Supervised Intuitionistic Fuzzy C-means Clustering
    Arora, J.
    Tushir, M.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2020, 7 (24) : 1 - 11
  • [6] A Novel Semi-Supervised Fuzzy C-Means Clustering Method
    Li, Kunlun
    Cao, Zheng
    Cao, Liping
    Zhao, Rui
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3761 - +
  • [7] PKFCM - Proximity based Kernel Fuzzy C-Means for Semi-supervised Data Clustering
    Li, Jinbo
    Chen, Long
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 581 - 586
  • [8] Robust Semi-Supervised Fuzzy C-Means Clustering for Time Series
    Xu, Jiucheng
    Hou, Qinchen
    Qu, Kanglin
    Sun, Yuanhao
    Meng, Xiangru
    Computer Engineering and Applications, 2023, 59 (08): : 73 - 80
  • [9] Objective Function of Semi-Supervised Fuzzy C-Means Clustering Algorithm
    Li, Chunfang
    Liu, Lianzhong
    Jiang, Wenli
    2008 6TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, VOLS 1-3, 2008, : 704 - +
  • [10] Metric-based Semi-Supervised Fuzzy c-Means Clustering
    Yin, Xuesong
    Huang, Qi
    Li, Liangming
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 166 - +