Nanobody Engineering: Toward Next Generation Immunotherapies and Immunoimaging of Cancer

被引:92
作者
Chanier, Timothee [1 ]
Chames, Patrick [1 ]
机构
[1] Aix Marseille Univ, CNRS, CRCM, INSERM,Inst Paoli Calmettes, F-13009 Marseille, France
关键词
Nanobody; Single Domain Antibody; Cancer; Immunotherapy; Imaging; TUMOR-ASSOCIATED MACROPHAGES; HER2-POSITIVE BREAST-CANCER; STIMULATING FACTOR-RECEPTOR; SINGLE-DOMAIN ANTIBODIES; DELTA-T-CELLS; BISPECIFIC ANTIBODY; G-CSF; ANTITUMOR-ACTIVITY; LENTIVIRAL VECTORS; CYTOTOXIC ACTIVITY;
D O I
10.3390/antib8010013
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
In the last decade, cancer immunotherapies have produced impressive therapeutic results. However, the potency of immunotherapy is tightly linked to immune cell infiltration within the tumor and varies from patient to patient. Thus, it is becoming increasingly important to monitor and modulate the tumor immune infiltrate for an efficient diagnosis and therapy. Various bispecific approaches are being developed to favor immune cell infiltration through specific tumor targeting. The discovery of antibodies devoid of light chains in camelids has spurred the development of single domain antibodies (also called VHH or nanobody), allowing for an increased diversity of multispecific and/or multivalent formats of relatively small sizes endowed with high tissue penetration. The small size of nanobodies is also an asset leading to high contrasts for non-invasive imaging. The approval of the first therapeutic nanobody directed against the von Willebrand factor for the treatment of acquired thrombotic thrombocypenic purpura (Caplacizumab, Ablynx), is expected to bolster the rise of these innovative molecules. In this review, we discuss the latest advances in the development of nanobodies and nanobody-derived molecules for use in cancer immunotherapy and immunoimaging.
引用
收藏
页数:21
相关论文
共 134 条
[1]   G-CSF Promotes Neuroblastoma Tumorigenicity and Metastasis via STAT3-Dependent Cancer Stem Cell Activation [J].
Agarwal, Saurabh ;
Lakoma, Anna ;
Chen, Zaowen ;
Hicks, John ;
Metelitsa, Leonid S. ;
Kim, Eugene S. ;
Shohet, Jason M. .
CANCER RESEARCH, 2015, 75 (12) :2566-2579
[2]  
Albert Susann, 2018, Oncotarget, V9, P25597, DOI 10.18632/oncotarget.25390
[3]   A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform [J].
Albert, Susann ;
Arndt, Claudia ;
Feldmann, Anja ;
Bergmann, Ralf ;
Bachmann, Dominik ;
Koristka, Stefanie ;
Ludwig, Florian ;
Ziller-Walter, Pauline ;
Kegler, Alexandra ;
Gaertner, Sebastian ;
Schmitz, Marc ;
Ehninger, Armin ;
Cartellieri, Marc ;
Ehninger, Gerhard ;
Pietzsch, Hans-Juergen ;
Pietzsch, Jens ;
Steinbach, Joerg ;
Bachmann, Michael .
ONCOIMMUNOLOGY, 2017, 6 (04)
[4]   Liposomal simvastatin inhibits tumor growth via targeting tumor-associated macrophages-mediated oxidative stress [J].
Alupei, Marius Costel ;
Licarete, Emilia ;
Patras, Laura ;
Banciu, Manuela .
CANCER LETTERS, 2015, 356 (02) :946-952
[5]   Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells [J].
An, Na ;
Hou, Yun Nan ;
Zhang, Qiao Xia ;
Li, Ting ;
Zhang, Qiong Li ;
Fang, Cheng ;
Chen, Huan ;
Lee, Hon Cheung ;
Zhao, Yong Juan ;
Du, Xin .
MOLECULAR PHARMACEUTICS, 2018, 15 (10) :4577-4588
[6]  
[Anonymous], J CARCINOG MUTAGEN
[7]   Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? [J].
Arnould, L ;
Gelly, M ;
Penault-Llorca, F ;
Benoit, L ;
Bonnetain, F ;
Migeon, C ;
Cabaret, V ;
Fermeaux, V ;
Bertheau, P ;
Garnier, J ;
Jeannin, JF ;
Coudert, B .
BRITISH JOURNAL OF CANCER, 2006, 94 (02) :259-267
[8]   Identification and in vitro characterization of novel nanobodies against human granulocyte colony-stimulating factor receptor to provide inhibition of G-CSF function [J].
Bakherad, Hamid ;
Gargari, Seyed Latif Mousavi ;
Sepehrizadeh, Zargham ;
Aghamollaei, Hossein ;
Taheri, Ramezan Ali ;
Torshabi, Maryam ;
Yazdi, Mojtaba Tabatabaei ;
Ebrahimizadeh, Walead ;
Setayesh, Neda .
BIOMEDICINE & PHARMACOTHERAPY, 2017, 93 :245-254
[9]   A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells [J].
Balhuizen, Alexander ;
Massa, Sam ;
Mathijs, Iris ;
Turatsinze, Jean-Valery ;
De Vos, Jens ;
Demine, Stephane ;
Xavier, Catarina ;
Villate, Olatz ;
Millard, Isabelle ;
Egrise, Dominique ;
Capito, Carmen ;
Scharfmann, Raphael ;
In't Veld, Pieter ;
Marchetti, Piero ;
Muyldermans, Serge ;
Goldman, Serge ;
Lahoutte, Tony ;
Bouwens, Luc ;
Eizirik, Decio L. ;
Devoogdt, Nick .
SCIENTIFIC REPORTS, 2017, 7
[10]   In vivo near-infrared fluorescence targeting of T cells: comparison of nanobodies and conventional monoclonal antibodies [J].
Bannas, Peter ;
Well, Lennart ;
Lenz, Alexander ;
Rissiek, Bjoern ;
Haag, Friedrich ;
Schmid, Joanna ;
Hochgraefe, Katja ;
Trepel, Martin ;
Adam, Gerhard ;
Ittrich, Harald ;
Koch-Nolte, Friedrich .
CONTRAST MEDIA & MOLECULAR IMAGING, 2014, 9 (02) :135-142