The Oncogenic Relevance of miR-17-92 Cluster and Its Paralogous miR-106b-25 and miR-106a-363 Clusters in Brain Tumors

被引:58
作者
Gruszka, Renata [1 ]
Zakrzewska, Magdalena [1 ]
机构
[1] Med Univ Lodz, Dept Mol Pathol & Neuropathol, Pomorska 251, PL-92213 Lodz, Poland
关键词
brain tumor; cluster; microRNA; miR-17-92; miR-106b-25; miR-106a-363; nervous system; OncomiR-1; PILOCYTIC ASTROCYTOMAS; MICRORNA BIOGENESIS; CELL-PROLIFERATION; GLIOBLASTOMA CELL; LUNG CANCERS; TARGET GENES; MYCN; EXPRESSION; SURVIVAL; PATHWAY;
D O I
10.3390/ijms19030879
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fundamental function of ribonucleic acids is to transfer genetic information from DNA to protein during translation process, however, this is not the only way connecting active RNA sequences with essential biological processes. Up until now, many RNA subclasses of different size, structure, and biological function were identified. Among them, there are non-coding single-stranded microRNAs (miRNAs). This subclass comprises RNAs of 19-25 nucleotides in length that modulate the activity of well-defined coding RNAs and play a crucial role in many physiological and pathological processes. miRNA genes are located both in exons, introns, and also within non-translated regions. Several miRNAs that are transcribed from the adjacent miRNA genes are called cluster. One of the largest ones is miR-17-92 cluster known as OncomiR-1 due to its strong link to oncogenesis. Six miRNAs from the OncomiR-1 have been shown to play important roles in various physiological cellular processes but also through inhibition of cell death in many cancer-relevant processes. Due to the origin and similarity of the sequence, miR-17-92 cluster and paralogs, miR-106b-25 and miR-106a-363 clusters were defined. Here we discuss the oncogenic function of those miRNA subgroups found in many types of cancers, including brain tumors.
引用
收藏
页数:16
相关论文
共 97 条
[1]   The Inescapable Influence of Noncoding RNAs in Cancer [J].
Adams, Brian D. ;
Anastasiadou, Eleni ;
Esteller, Manel ;
He, Lin ;
Slack, Frank J. .
CANCER RESEARCH, 2015, 75 (24) :5206-5210
[2]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[3]   Non-coding RNA networks in cancer [J].
Anastasiadou, Eleni ;
Jacob, Leni S. ;
Slack, Frank J. .
NATURE REVIEWS CANCER, 2018, 18 (01) :5-18
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]  
Bell G.W., 2014, CURR PROTOC MOL BIOL, V107
[6]   MicroRNA biogenesis: Epigenetic modifications as another layer of complexity in the microRNA expression regulation [J].
Bhat, Susheel Sagar ;
Jarmolowski, Artur ;
Szweykowska-Kulinska, Zofia .
ACTA BIOCHIMICA POLONICA, 2016, 63 (04) :717-723
[7]   Survey of MicroRNA Expression in Pediatric Brain Tumors [J].
Birks, Diane K. ;
Barton, Valerie N. ;
Donson, Andrew M. ;
Handler, Michael H. ;
Vibhakar, Rajeev ;
Foreman, Nicholas K. .
PEDIATRIC BLOOD & CANCER, 2011, 56 (02) :211-216
[8]   E2F target genes: unraveling the biology [J].
Bracken, AP ;
Ciro, M ;
Cocito, A ;
Helin, K .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (08) :409-417
[9]   miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas [J].
Braoudaki, M. ;
Lambrou, G. I. ;
Giannikou, K. ;
Papadodima, S. A. ;
Lykoudi, A. ;
Stefanaki, K. ;
Sfakianos, G. ;
Kolialexi, A. ;
Tzortzatou-Stathopoulou, F. ;
Tzetis, M. ;
Kitsiou-Tzeli, S. ;
Kanavakis, E. .
TUMOR BIOLOGY, 2016, 37 (07) :9887-9897
[10]   Origins and Mechanisms of miRNAs and siRNAs [J].
Carthew, Richard W. ;
Sontheimer, Erik J. .
CELL, 2009, 136 (04) :642-655