Left loops, bipartite graphs with parallelism and bipartite involution sets

被引:4
|
作者
Karzel, H [1 ]
Pianta, S
机构
[1] Tech Univ Munich, Zentrum Math, D-80290 Munich, Germany
[2] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2005年 / 75卷 / 1期
关键词
graphs; loops; involution sets;
D O I
10.1007/BF02942043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a representation of any semiregular left loop by means of a semiregular bipartite involution set or, equivalently, a 1-factorization (i.e., a parallelism) of a bipartite graph, with at least one transitive vertex. In these correspondences, Bol loops are associated on one hand to invariant regular bipartite involution sets and, on the other hand, to trapezium complete bipartite graphs with parallelism; K-loops (or Bruck loops) are further characterized by a sort of local Pascal configuration in the related graph.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 25 条
  • [1] Left loops, bipartite graphs with parallelism and bipartite involution sets
    H. Karzel
    S. Pianta
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2005, 75 : 203 - 214
  • [2] From involution sets, graphs and loops to loop-nearrings
    Karzel, H
    Pianta, S
    Zizioli, E
    Nearring and Nearfields, 2005, : 235 - 252
  • [3] Generalization of bipartite graphs
    Reddy, P. Siva Kota
    Hemavathi, P. S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (03) : 787 - 793
  • [4] CYCLABILITY IN BIPARTITE GRAPHS
    Amar, Denise
    Flandrin, Evelyne
    Gancarzewicz, Grzegorz
    OPUSCULA MATHEMATICA, 2009, 29 (04) : 345 - 364
  • [5] Cyclability and pancyclability in bipartite graphs
    Abderrezzak, ME
    Flandrin, E
    Amar, D
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 3 - 11
  • [6] Edge coloring nearly bipartite graphs
    Reed, B
    OPERATIONS RESEARCH LETTERS, 1999, 24 (1-2) : 11 - 14
  • [7] A Generalized Information-Theoretic Approach for Bounding the Number of Independent Sets in Bipartite Graphs
    Sason, Igal
    ENTROPY, 2021, 23 (03) : 1 - 14
  • [8] Minimal path decomposition of complete bipartite graphs
    Costas K. Constantinou
    Georgios Ellinas
    Journal of Combinatorial Optimization, 2018, 35 : 684 - 702
  • [9] VERTEX-DISJOINT QUADRILATERALS IN BIPARTITE GRAPHS
    YAN Jin LIU Guizhen (School of Mathematics & Systems Science
    JournalofSystemsScienceandComplexity, 2004, (04) : 532 - 537
  • [10] An algorithm for counting short cycles in bipartite graphs
    Halford, TR
    Chugg, KM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) : 287 - 292