Logarithmically Improved Regularity Criteria for the Navier-Stokes and MHD Equations

被引:105
作者
Fan, Jishan [1 ,2 ]
Jiang, Song [3 ]
Nakamura, Gen [2 ]
Zhou, Yong [4 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[3] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
关键词
Navier-Stokes equations; MHD equations; regularity criteria; TERMS;
D O I
10.1007/s00021-010-0039-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, logarithmically improved regularity criteria for the Navier-Stokes and the MHD equations are established in terms of both the vorticity field and the pressure.
引用
收藏
页码:557 / 571
页数:15
相关论文
共 33 条
[1]  
[Anonymous], 2001, FOURIER ANAL, DOI DOI 10.1090/GSM/029
[2]  
[Anonymous], 2003, USP MAT NAUK
[3]  
Chan CH, 2007, METHODS APPL ANAL, V14, P197
[4]   On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) :919-930
[5]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[6]  
Fan J., 2009, LOGARITHMICALL UNPUB
[7]   On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure [J].
Fan, Jishan ;
Jiang, Song ;
Ni, Guoxi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (11) :2963-2979
[8]   Regularity Criterion for Weak Solutions to the Navier-Stokes Equations in Terms of the Gradient of the Pressure [J].
Fan, Jishan ;
Ozawa, Tohru .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
[9]  
Friedman A., 1969, Partial Differential Equations
[10]   On the regularity of weak solutions to the magnetohydrodynamic equations [J].
He, C ;
Xin, ZP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :235-254