Overcoming the sign problem in one-dimensional QCD by new integration rules with polynomial exactness

被引:9
作者
Ammon, A. [4 ]
Hartung, T. [2 ]
Jansen, K. [1 ]
Leoevey, H. [3 ]
Volmer, J. [1 ]
机构
[1] DESY Zeuthen, NIC, Platanenallee 6, D-15738 Zeuthen, Germany
[2] Kings Coll London, Dept Math, Strand, London WC2R 2LS, England
[3] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[4] IVU Traff Technol AG, Bundesallee 88, D-12161 Berlin, Germany
关键词
LATTICE SYSTEMS;
D O I
10.1103/PhysRevD.94.114508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we describe a new integration method for the groups U(N) and SU(N), for which we verified numerically that it is polynomially exact for N <= 3. The method is applied to the example of one-dimensional QCD with a chemical potential. We explore, in particular, regions of the parameter space in which the sign problem appears due the presence of the chemical potential. While Markov chain Monte Carlo fails in this region, our new integration method still provides results for the chiral condensate on arbitrary precision, demonstrating clearly that it overcomes the sign problem. Furthermore, we demonstrate that also in other regions of parameter space our new method leads to errors which are reduced by orders of magnitude.
引用
收藏
页数:12
相关论文
共 18 条
[1]   Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential [J].
Aarts, Gert ;
Splittorff, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (08)
[2]  
Abbaspour H., 2007, Basic Lie Theory
[3]   On the efficient numerical solution of lattice systems with low-order couplings [J].
Ammon, A. ;
Genz, A. ;
Hartung, T. ;
Jansen, K. ;
Leoevey, H. ;
Volmer, J. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 198 :71-81
[4]  
Bloch J., 2013, POS LATTICE, V2014, P194
[5]   Subset method for one-dimensional QCD [J].
Bloch, Jacques ;
Bruckmann, Falk ;
Wettig, Tilo .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10)
[6]   Subsets of configurations and canonical partition functions [J].
Bloch, Jacques ;
Bruckmann, Falk ;
Kieburg, Mario ;
Splittorff, K. ;
Verbaarschot, J. J. M. .
PHYSICAL REVIEW D, 2013, 87 (03)
[7]  
Delsarte P., 1977, Geometriae Dedicata, V6, P363, DOI [DOI 10.1007/BF03187604, 10.1007/BF03187604]
[8]  
Frankel T., 2012, The Geometry of Physics An Introduction, V3rd edn
[9]  
Gattringer C, 2010, LECT NOTES PHYS, V788, P1, DOI 10.1007/978-3-642-01850-3_1
[10]  
Gattringer C., 2014, P SCI LATTICE2013, VLATTICE2013