Root Sparse Bayesian Learning for Off-Grid DOA Estimation

被引:203
作者
Dai, Jisheng [1 ,2 ]
Bao, Xu [3 ]
Xu, Weichao [4 ]
Chang, Chunqi [5 ,6 ]
机构
[1] Jiangsu Univ, Dept Elect Engn, Zhenjiang 212013, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[3] Jiangsu Univ, Dept Telecommun Engn, Zhenjiang 212013, Peoples R China
[4] Guangdong Univ Technol, Dept Automat Control, Guangzhou 510006, Guangdong, Peoples R China
[5] Shenzhen Univ, Sch Biomed Engn, Shenzhen 518060, Peoples R China
[6] Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival (DOA); polynomial root; sparse Bayesian learning (SBL); sparse representation; ARRIVAL ESTIMATION; ARRAYS;
D O I
10.1109/LSP.2016.2636319
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The performance of the existing sparse Bayesian learning (SBL) methods for off-grid direction-of-arrival (DOA) estimation is dependent on the tradeoff between the accuracy and the computational workload. To speed up the off-grid SBL method while remain a reasonable accuracy, this letter describes a computationally efficient root SBL method for off-grid DOA estimation, which adopts a coarse grid and considers the sampled locations in the coarse grid as the adjustable parameters. We utilize an expectation-maximization algorithm to iteratively refine this coarse grid and illustrate that each updated grid point can be simply achieved by the root of a certain polynomial. Simulation results demonstrate that the computational complexity is significantly reduced, and the modeling error can be almost eliminated. © 1994-2012 IEEE.
引用
收藏
页码:46 / 50
页数:5
相关论文
共 12 条
[1]   Directions-of-Arrival Estimation Through Bayesian Compressive Sensing Strategies [J].
Carlin, Matteo ;
Rocca, Paolo ;
Oliveri, Giacomo ;
Viani, Federico ;
Massa, Andrea .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (07) :3828-3838
[2]   Direction-of-Arrival Estimation Via Real-Valued Sparse Representation [J].
Dai, Jisheng ;
Xu, Xin ;
Zhao, Dean .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 :376-379
[3]   Real-valued DOA estimation for spherical arrays using sparse Bayesian learning [J].
Huang, Qinghua ;
Zhang, Guangfei ;
Fang, Yong .
SIGNAL PROCESSING, 2016, 125 :79-86
[4]   Bayesian compressive sensing [J].
Ji, Shihao ;
Xue, Ya ;
Carin, Lawrence .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) :2346-2356
[5]   Two decades of array signal processing research - The parametric approach [J].
Krim, H ;
Viberg, M .
IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (04) :67-94
[6]   A sparse signal reconstruction perspective for source localization with sensor arrays [J].
Malioutov, D ;
Çetin, M ;
Willsky, AS .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :3010-3022
[7]   Sparse Bayesian learning and the relevance vector machine [J].
Tipping, ME .
JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (03) :211-244
[8]   Sparse Bayesian learning for basis selection [J].
Wipf, DP ;
Rao, BD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) :2153-2164
[9]   Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference [J].
Yang, Zai ;
Xie, Lihua ;
Zhang, Cishen .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (01) :38-43
[10]   Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning [J].
Zhang, Yi ;
Ye, Zhongfu ;
Xu, Xu ;
Hu, Nan .
SIGNAL PROCESSING, 2014, 98 :197-201