In the current work we consider the numerical solutions of equations of stationary states for a general class of the spatial segregation of reaction-diffusion systems with m >= 2 population densities. We introduce a discrete multi-phase minimization problem related to the segregation problem, which allows to prove the existence and uniqueness of the corresponding finite difference scheme. Based on that scheme, we suggest an iterative algorithm and show its consistency and stability. For the special case m = 2, we show that the problem gives rise to the generalized version of the so-called two-phase obstacle problem. In this particular case we introduce the notion of viscosity solutions and prove convergence of the difference scheme to the unique viscosity solution. At the end of the paper we present computational tests, for different internal dynamics, and discuss numerical results. (C) 2016 Elsevier Ltd. All rights reserved.
机构:
UPMC Univ Paris 06, Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche, UMR 7586,CNRS,Univ Paris Diderot,Sorbonne Univ, F-75013 Paris, FranceUPMC Univ Paris 06, Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche, UMR 7586,CNRS,Univ Paris Diderot,Sorbonne Univ, F-75013 Paris, France
Desvillettes, Laurent
Fellner, Klemens
论文数: 0引用数: 0
h-index: 0
机构:
Karl Franzens Univ Graz, Inst Math & Sci Comp, A-8010 Graz, AustriaUPMC Univ Paris 06, Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche, UMR 7586,CNRS,Univ Paris Diderot,Sorbonne Univ, F-75013 Paris, France
Fellner, Klemens
Tang, Bao Quoc
论文数: 0引用数: 0
h-index: 0
机构:
Karl Franzens Univ Graz, Inst Math & Sci Comp, A-8010 Graz, Austria
Hanoi Univ Sci & Technol, Fac Appl Math & Informat, 1 Dai Co Viet, Hanoi, VietnamUPMC Univ Paris 06, Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche, UMR 7586,CNRS,Univ Paris Diderot,Sorbonne Univ, F-75013 Paris, France