Linear cellular automata, finite automata and Pascal's triangle

被引:30
作者
Allouche, JP
vonHaeseler, F
Peitgen, HO
Skordev, G
机构
[1] UNIV BREMEN,CTR COMPLEX SYST & VISUALIZAT,D-28334 BREMEN,GERMANY
[2] LMD,CNRS,F-13288 MARSEILLE 9,FRANCE
关键词
D O I
10.1016/0166-218X(94)00132-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the question whether double sequences produced by one-dimensional linear cellular automata can also be generated by finite automata. A complete solution for binomial coefficients and Lucas' numbers is given and some partial results for the general case are presented.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 35 条
[31]   CALCULATING GROWTH-RATES AND MOMENTS FOR ADDITIVE CELLULAR AUTOMATA [J].
WILLSON, SJ .
DISCRETE APPLIED MATHEMATICS, 1992, 35 (01) :47-65
[32]   CELLULAR AUTOMATA CAN GENERATE FRACTALS [J].
WILLSON, SJ .
DISCRETE APPLIED MATHEMATICS, 1984, 8 (01) :91-99
[33]  
WILLSON SJ, 1986, CHAOTIC DYNAMICS FRA
[34]  
Wolfram S., 1986, THEORY APPL CELLULAR
[35]  
[No title captured]