Linear cellular automata, finite automata and Pascal's triangle

被引:30
作者
Allouche, JP
vonHaeseler, F
Peitgen, HO
Skordev, G
机构
[1] UNIV BREMEN,CTR COMPLEX SYST & VISUALIZAT,D-28334 BREMEN,GERMANY
[2] LMD,CNRS,F-13288 MARSEILLE 9,FRANCE
关键词
D O I
10.1016/0166-218X(94)00132-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the question whether double sequences produced by one-dimensional linear cellular automata can also be generated by finite automata. A complete solution for binomial coefficients and Lucas' numbers is given and some partial results for the general case are presented.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 35 条
[1]  
Allouche J.-P., 1987, Expo. Math., V5, P239
[2]   THE RING OF K-REGULAR SEQUENCES [J].
ALLOUCHE, JP ;
SHALLIT, J .
THEORETICAL COMPUTER SCIENCE, 1992, 98 (02) :163-197
[3]  
ALLOUCHE JP, 1990, NUMBER THEORY PHYSIC, V47, P177
[4]  
[Anonymous], B SOC MATH FRANCE
[5]  
Berstel J., 1989, Proceedings of the 2nd International Conference. Pixim 89. Computer Graphics in Paris, P387
[6]  
BERSTEL J, 1989, 897 LITP
[7]  
BERSTEL J, 1989, AFCET, V61, P167
[8]  
BONDARENKO B, 1990, GENERALIZED TRIANGLE
[9]  
CHRISTOL G, 1980, B SOC MATH FR, V108, P401
[10]  
Cobham A., 1972, MATH SYST THEORY, V6, P164, DOI 10.1007/BF01706087