Motor Imagery Based BCI for a Maze Game

被引:0
|
作者
Bordoloi, Simanta [1 ]
Sharmah, Ujjal [1 ]
Hazarika, Shyamanta M. [1 ]
机构
[1] Tezpur Univ, Dept Comp Sci & Engn, Tezpur, Assam, India
关键词
Electroencephalogram; Brain-Computer Interfacing; Bispectrum; Support Vector Machine; COMPUTER; SIGNALS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalogram (EEG) signals generated out of motor imagery (MI) can be used for Brain Computer Interfacing (BCI). In order to accomplish this goal, we have classified four different MI tasks using two hybrid features of bispectrum of EEG through a RBF kernel support vector machine. As a demonstration of its applicability for a non-invasive BCI, we design and develop a BCI maze game, where a player plays the game in real time using his brain signals.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A NEW MOTOR IMAGERY BASED BCI NEURAL NETWORKS APPROACH
    Shepelev, I. E.
    Lazurenko, D. M.
    Kiroy, V. N.
    Aslanyan, E. V.
    Bakhtin, O. M.
    Minyaeva, N. R.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2017, 67 (04) : 527 - 545
  • [22] Generic Channels Selection in Motor Imagery-Based BCI
    Qiu, Zhaoyang
    Jin, Jing
    Zhang, Yu
    Wang, Xingyu
    ADVANCES IN COGNITIVE NEURODYNAMICS (V), 2016, : 413 - 419
  • [23] Semi-supervised Adaptation of Motor Imagery Based BCI Systems
    Yilmaz, Ismail
    Demir, Sumeyra
    Tasdizen, Tolga
    Cetin, Mujdat
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1841 - 1844
  • [24] Motor Imagery Detection with Wavelet Analysis for NIRS-based BCI
    Koo, Bonkon
    Hanh Vu
    Lee, Hwan-Gon
    Shin, Hyung-Cheul
    Choi, Seungjin
    2016 4TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2016,
  • [25] Incremental Adaptive EEG Classification of Motor Imagery-based BCI
    Rong, Hai-Jun
    Li, Changjun
    Bao, Rong-Jing
    Chen, Badong
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 179 - 185
  • [26] Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition
    Sadiq, Muhammad Tariq
    Yu, Xiaojun
    Yuan, Zhaohui
    Aziz, Muhammad Zulkifal
    Rehman, Naveed ur
    Ding, Weiping
    Xiao, Gaoxi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1177 - 1189
  • [27] EEG Signals Based Motor Imagery and Movement Classification for BCI Applications
    Tasar, Beyda
    Yaman, Orhan
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1425 - 1429
  • [28] Data Space Adaptation for Multiclass Motor Imagery-based BCI
    Giles, Joshua
    Ang, Kai Keng
    Mihaylova, Lyudmila
    Arvaneh, Mahnaz
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2004 - 2007
  • [29] Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
    Cui, Yujie
    Xie, Songyun
    Fu, Yingxin
    Xie, Xinzhou
    BRAIN SCIENCES, 2023, 13 (09)
  • [30] Classification of EEG-based motor imagery BCI by using ECOC
    Mobarezpour, Jahangir
    Khosrowabadi, Reza
    Ghaderi, Reza
    Navi, Keivan
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (02): : 23 - 33