On the dependence of ionic transport on crystal orientation in NaSICON-type solid electrolytes

被引:9
|
作者
Ladenstein, Lukas [1 ]
Lunghammer, Sarah [1 ]
Wang, Eric Y. [2 ]
Miara, Lincoln J. [2 ]
Wilkening, H. Martin R. [1 ]
Redhammer, Guenther J. [3 ]
Rettenwander, Daniel [1 ]
机构
[1] Graz Univ Technol NAWI Graz, Inst Chem & Technol Mat, Graz, Austria
[2] Samsung Adv Inst Technol USA, Cambridge, MA USA
[3] Salzburg Univ, Dept Chem & Phys Mat, Salzburg, Austria
来源
JOURNAL OF PHYSICS-ENERGY | 2020年 / 2卷 / 03期
基金
奥地利科学基金会;
关键词
solid electrolyte; NaSICON; isotropy; ionic conductivity; NA3SC2(PO4)(3) SINGLE-CRYSTALS; CONDUCTIVITY; DIFFUSION; NMR; NA; RELAXATION; SODIUM;
D O I
10.1088/2515-7655/ab71ec
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The dependence of ionic transport on crystal orientations in NaSICON-type solid electrolytes is studied on flux-grown M3Sc2(PO4)(3)(M = Na, Ag) single crystals with well-defined facets. Herein, we provide the first impedance spectroscopy study to characterize ion conduction along different crystallographic orientations in this important class of materials for electrochemical energy storage systems. Moreover, we used single crystal x-ray diffraction, differential scanning calorimetry,Na-23 NMR spin-lattice relaxation measurements, andab initiomolecular dynamics simulations to study the interplay of structure and ion transport taking place at different length scales. We conclude that the phase behavior in NaSICON-type materials is strongly linked to ion diffusion. At room temperature, ionic conductivity is slightly anisotropic along the crystallographic orientations [001] and [100]. The slightly different activation energies are related to diffusion bottlenecks solely changing along [001]. This change is caused by anisotropic thermal lattice expansion. With increasing temperature, ion transport increasingly becomes isotropic finally resulting in an order-disorder phase transition fromC2/ctoR-3c. This phase transition is associated with a clear change in activation energy solely along [001]; it can be traced back to the increasing jump distance along this crystal orientation with temperature. Astonishingly, changing the ionic charge carrier, i.e. when going from Na(+)to Ag+, shifts the phase transition temperature by 140 K towards lower temperature. The Arrhenius behavior remains, however, similar. This finding is related to the higher mobility of Ag(+)in the NaSICON framework leading to isotropic ion diffusion at much lower temperatures. Overall, flux-grown M3Sc2(PO4)(3)allowed us to show that ionic transport parameters and phase stability sensitively depend on crystal chemistry.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion rechargeable batteries
    Singh, Kushal
    Chakraborty, Anjan
    Thirupathi, Raghunayakula
    Omar, Shobit
    IONICS, 2022, 28 (12) : 5289 - 5319
  • [32] Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
    Hartmann, Pascal
    Leichtweiss, Thomas
    Busche, Martin R.
    Schneider, Meike
    Reich, Marisa
    Sann, Joachim
    Adelhelm, Philipp
    Janek, Juergen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) : 21064 - 21074
  • [33] Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping
    Ortiz, Gregorio F.
    Lopez, Maria C.
    Lavela, Pedro
    Vidal-Abarca, Candela
    Tirado, Jose L.
    SOLID STATE IONICS, 2014, 262 : 573 - 577
  • [34] Na3Zr2(SiO4)2PO4 NASICON-type solid electrolyte: Influence of milling duration on microstructure and ionic conductivity mechanism
    Chong, Man Kit
    Zainuddin, Zalita
    Omar, Fatin Saiha
    Hj Jumali, Mohammad Hafizuddin
    CERAMICS INTERNATIONAL, 2022, 48 (15) : 22106 - 22113
  • [35] Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes
    Kobayashi, Eiji
    Plashnitsa, Larisa S.
    Doi, Takayuki
    Okada, Shigeto
    Yamaki, Jun-ichi
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (07) : 894 - 896
  • [36] Ionic conductivity of NASICON-type LiHf2(PO4)(3): A reexamination
    MartinezJuarez, A
    Iglesias, JE
    Rojo, JM
    SOLID STATE IONICS, 1996, 91 (3-4) : 295 - 301
  • [37] New Calcium Ion Conducting Solid Electrolyte with NASICON-type Structure
    Lee, Wonrak
    Tamura, Shinji
    Imanaka, Nobuhito
    CHEMISTRY LETTERS, 2017, 46 (10) : 1486 - 1489
  • [38] Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes
    Xie, J.
    Imanishi, N.
    Zhang, T.
    Hirano, A.
    Takeda, Y.
    Yamamoto, O.
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 365 - 370
  • [39] Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study
    Kieu My Bui
    Van An Dinh
    Okada, Susumu
    Ohno, Takahisa
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (39) : 27226 - 27231
  • [40] Divalent Ni2+ cation conduction in NASICON-type solid
    Lee, Wonrak
    Yamauchi, Shota
    Tamura, Shinji
    Imanaka, Nobuhito
    MATERIALS LETTERS, 2019, 234 : 261 - 263