Dataset Distillation by Matching Training Trajectories

被引:85
作者
Cazenavette, George [1 ]
Wang, Tongzhou [2 ]
Torralba, Antonio [2 ]
Efros, Alexei A. [3 ]
Zhu, Jun-Yan [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Calif Berkeley, Berkeley, CA USA
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.01045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dataset distillation is the task of synthesizing a small dataset such that a model trained on the synthetic set will match the test accuracy of the model trained on the full dataset. In this paper, we propose a new formulation that optimizes our distilled data to guide networks to a similar state as those trained on real data across many training steps. Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data. To efficiently obtain the initial and target network parameters for large-scale datasets, we pre-compute and store training trajectories of expert networks trained on the real dataset. Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
引用
收藏
页码:10708 / 10717
页数:10
相关论文
共 50 条
[1]  
[Anonymous], 2013, ARXIV13116510
[2]  
[Anonymous], 2020, NEURIPS
[3]  
[Anonymous], CONVOLUTIONAL NEURAL
[4]   A review of instance selection methods [J].
Arturo Olvera-Lopez, J. ;
Ariel Carrasco-Ochoa, J. ;
Francisco Martinez-Trinidad, J. ;
Kittler, Josef .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 34 (02) :133-143
[5]  
Bachem Olivier, 2017, ARXIV170306476
[6]  
Bohdal O., 2020, ARXIV200608572
[7]  
Borsos Zalan, 2020, Advances in Neural Information Processing Systems, V33, P14879
[8]  
Chen Yutian, 2010, Uncertainty in Artificial Intelligence
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]  
Fastai, FASTAI IMAGENETTE SM, V7