Deep Learning for Fast Beam Tracking using RSRP in Millimeter Wave MIMO Systems

被引:2
作者
Zhang, Jiankun [1 ]
Wang, Hao [1 ]
Du, Guanglong [1 ]
Xie, Hongxiang [1 ]
机构
[1] Huawei Technol Co Ltd, Beijing 100095, Peoples R China
来源
2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING) | 2022年
关键词
Beam tracking; deep learning; millimeter wave; massive MIMO; CHANNEL ESTIMATION;
D O I
10.1109/VTC2022-Spring54318.2022.9860857
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive channel estimation is an effective way to reduce the number of measurements for fast beam tracking in millimeter wave (mm Wave) communications. However in some practical scenarios, the phase of the received signal is difficult to measure, leading to challenges for fast beam tracking, especially in non-line-of-sight (NLoS) channels. In this paper, we propose a novel beam tracking algorithm under random phase offset scenarios using compressive sensing (CS). Unlike traditional algorithms based on complex signal measurements, the proposed algorithm could derive the channel information using reference signal received power (RSRP), without the need of knowledge of the phase. To recover the compressive channel with high precision and low complexity, we design a deep learning beam tracking scheme utilizing a complex-valued auto-encoder. Simulation results show that the proposed scheme can outperform traditional hierarchical search manner under blockage and rotation scenarios.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Hybrid Intrusion Detection System Design for Distributed Energy Resource Systems [J].
Chavez, A. ;
Lai, C. ;
Jacobs, N. ;
Hossain-McKenzie, S. ;
Jones, C. B. ;
Johnson, J. ;
Summers, A. .
2019 IEEE CYBERPELS (CYBERPELS), 2019,
[2]   Hybrid Evolutionary-Based Sparse Channel Estimation for IRS-Assisted mmWave MIMO Systems [J].
Chen, Zhen ;
Tang, Jie ;
Zhang, Xiu Yin ;
So, Daniel Ka Chun ;
Jin, Shi ;
Wong, Kai-Kit .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) :1586-1601
[3]   An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems [J].
Heath, Robert W., Jr. ;
Gonzalez-Prelcic, Nuria ;
Rangan, Sundeep ;
Roh, Wonil ;
Sayeed, Akbar M. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) :436-453
[4]   Partially Coherent Compressive Phase Retrieval for Millimeter-Wave Massive MIMO Channel Estimation [J].
Hu, Chen ;
Wang, Xiaodong ;
Dai, Linglong ;
Ma, Junjie .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :1673-1687
[5]   Channel Estimation for Millimeter Wave Massive MIMO Systems Using Separable Compressive Sensing [J].
Jiang, Ting ;
Song, Maozhong ;
Zhao, Xuejian ;
Liu, Xu .
IEEE ACCESS, 2021, 9 :49738-49749
[6]  
KHOROV E, 2019, P IEEE 2019 13 INT C
[7]  
Li XF, 2019, CONF REC ASILOMAR C, P800, DOI [10.1109/IEEECONF44664.2019.9048966, 10.1109/ieeeconf44664.2019.9048966]
[8]   Fast Beam Alignment for Millimeter Wave Communications: A Sparse Encoding and Phaseless Decoding Approach [J].
Li, Xingjian ;
Fang, Jun ;
Duan, Huiping ;
Chen, Zhi ;
Li, Hongbin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) :4402-4417
[9]   Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces [J].
Liu, Shicong ;
Gao, Zhen ;
Zhang, Jun ;
Di Renzo, Marco ;
Alouini, Mohamed-Slim .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) :9223-9228
[10]   Structured analysis/synthesis compressive sensing-based channel estimation in wideband mmWave large-scale multiple input multiple output systems [J].
Mejri, Ameni ;
Hajjaj, Moufida ;
Hasnaoui, Salem .
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2020, 31 (07)